×

Homotopic and geometric Galois theory. Abstracts from the workshop held March 7–13, 2021 (online meeting). (English) Zbl 1487.00035

Summary: In his “Letter to Faltings”, Grothendieck lays the foundation of what will become part of his multi-faceted legacy to arithmetic geometry. This includes the following three branches discussed in the workshop: the arithmetic of Galois covers, the theory of motives and the theory of anabelian Galois representations. Their geometrical paradigms endow similar but complementary arithmetic insights for the study of the absolute Galois group \(\operatorname{G}_{\mathbb{Q}}\) of the field of rational numbers that initially crystallized into a functorially group-theoretic unifying approach. Recent years have seen some new enrichments based on modern geometrical constructions – e.g. simplicial homotopy, Tannaka perversity, automorphic forms – that endow some higher considerations and outline new geometric principles. This workshop brought together an international panel of young and senior experts of arithmetic geometry who sketched the future desire paths of homotopic and geometric Galois theory.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
12-06 Proceedings, conferences, collections, etc. pertaining to field theory
11-06 Proceedings, conferences, collections, etc. pertaining to number theory
11F80 Galois representations
12F12 Inverse Galois theory
14G32 Universal profinite groups (relationship to moduli spaces, projective and moduli towers, Galois theory)
55Pxx Homotopy theory
13B05 Galois theory and commutative ring extensions
14H30 Coverings of curves, fundamental group
14F22 Brauer groups of schemes

Software:

QCI
Full Text: DOI

References:

[1] J. Anderson, I. Bouw, O. Ejder, N. Girgin, V. Karemaker, and M. Manes, Dy-namical Belyi maps, Women in Numbers Europe II, Association for Women in Mathematics Series, vol. 11, Springer, 2018, 57-82. · Zbl 1405.37093
[2] I. Bouw, O. Ejder, and V. Karemaker, Dynamical Belyi maps and arboreal Galois groups, manuscripta math. (2020). · Zbl 1470.11178
[3] F. Liu and B. Osserman, The irreducibility of certain pure-cycle Hurwitz spaces, Amer. J. Math. 130 (2008), no. 6, 1687-1708. · Zbl 1161.14021
[4] R.W.K. Odoni, On the prime divisors of the sequence w n+1 = 1 + w 1 • • • wn, J. London Math. Soc. (2) 32 (1985), no. 1, 1-11. · Zbl 0574.10020
[5] P. Clark and L. Watson, ABC and the Hasse principle for quadratic twists of hyperel-liptic curves, C. R. Math. Acad. Sci. Paris 356 (2018), 911-915. · Zbl 1404.11091
[6] A. Granville, Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not. IMRN 2007 (2007), Art. ID 027, 24 pp. · Zbl 1129.11028
[7] J. König and F. Legrand, Non-parametric sets of regular realizations over number fields, J. Algebra 497 (2018), 302-336. · Zbl 1436.12003
[8] J. König and F. Legrand, Density results for specialization sets of Galois covers, To appear in Journal of the Institute of Mathematics of Jussieu, 2019.
[9] J. König and F. Legrand and D. Neftin, On the local behavior of specializations of function field extensions, Int. Math. Res. Not. IMRN 2019 (2019), 2951-2980. · Zbl 1456.11220
[10] G. Malle, On the distribution of Galois groups, J. Number Theory 92 (2002), 315-329. · Zbl 1022.11058
[11] G. Malle and B.H. Matzat, Inverse Galois Theory, Springer Monographs in Mathema-tics, Springer, Berlin, 2018. Second edition. xvii+532 pp. · Zbl 1406.12001
[12] V. Berkovich, Integration of one-forms on p-adic analytic spaces, Annals of Mathematics Studies, vol. 162, Princeton University Press, Princeton, NJ, 2007. · Zbl 1161.14001
[13] F. Brown, Single-valued motivic periods and multiple zeta values, Forum Math. Sigma 2 (2014), Paper No. e25, 37 pp. · Zbl 1377.11099
[14] R. Cheng, E. Katz, Combinatorial Iterated Integrals and the Harmonic Volume of Graphs, Adv. in Appl. Math. 128 (2021), 102190. · Zbl 1467.05108
[15] V. Vologodsky, Hodge structure on the fundamental group and its application to p-adic integration, Mosc. Math. J. 3 (2003), no. 1, 205-247, 260. References · Zbl 1050.14013
[16] A. Bender and O. Wittenberg, A potential analogue of Schinzel’s hypothesis for polynomials with coefficients in Fq[t], Int. Math. Res. Not. 36 (2005), 2237-2248. · Zbl 1087.11072
[17] A. Bodin, P. Dèbes and S. Najib, The Schinzel Hypothesis for polynomials, Trans. Amer. Math. Soc. 373 (2020), 8339-8364. · Zbl 1469.12003
[18] , Prime and coprime values of polynomials, Enseign. Math. 66 (2020), 173-186. · Zbl 1470.11044
[19] A. Bodin, P. Dèbes, J. König and S. Najib, The Hilbert-Schinzel specialization prop-erty, arXiv:2009.07254 [math.NT] (2021).
[20] A. Bodin and P. Dèbes, Coprime values of multivariable polynomials, manuscript.
[21] A. Entin, On the Bateman-Horn conjecture for polynomials over large finite fields, Compos. Math. 152 (2016), 2525-2544 · Zbl 1371.11153
[22] M.D. Fried and M. Jarden, Field arithmetic, (3rd edition) Springer-Verlag, Berlin (2008). · Zbl 1145.12001
[23] B. Poonen, Squarefree values of multivariable polynomials, Monatsh. Math.12 (1962), 1099-1106.
[24] A. Schinzel, A property of polynomials with an application to Siegel’s lemma, Monatsh. Math.12 (1962), 1099-1106.
[25] R.G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 137 (2002), 239-251.
[26] F.A. Bogomolov, C. Böhning, Isoclinism and stable cohomology of wreath products, Birational geometry, rational curves, and arithmetic, 57-76, Springer, New York, 2013. · Zbl 1284.20060
[27] J.-L. Colliot-Thélène, M. Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’example d’Artin et Mumford, Invent. Math. 97 (1989), 141-158. · Zbl 0686.14050
[28] S. Garibaldi, A. Merkurjev, J-P. Serre, Cohomological invariants in Galois cohomology, AMS Univ. Lecture Series, vol.28, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1159.12311
[29] S. Hasegawa, A. Hoshi, A. Yamasaki, Rationality problem for norm one tori in small dimensions, Math. Comp. 89 (2020), 923-940. · Zbl 1456.11043
[30] K. Corlette and C. Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008), no. 5, 1271-1331. · Zbl 1155.58006
[31] M. Dettweiler and S. Reiter, The classification of orthogonally rigid G 2 -local systems and related differential operators, Trans. Amer. Math. Soc. 366 (2014), no. 11, 5821-5851. · Zbl 1312.32015
[32] V. Drinfeld, On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field, Adv. Math. 327 (2018), 708-788. · Zbl 1391.14042
[33] H. Esnault and M. Groechenig, Cohomologically rigid local systems and integrality, Selecta Math. (N.S.) 24 (2018), no. 5, 4279-4292. · Zbl 1408.14037
[34] N.M. Katz, Rigid local systems, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996. · Zbl 0864.14013
[35] C. Klevdal and S. Patrikis, G-rigid local systems are integral, arXiv e-prints (2020), 2009.07350.
[36] A. Langer and C. Simpson, Rank 3 rigid representations of projective fundamental groups, Compos. Math. 154 (2018), no. 7, 1534-1570. · Zbl 1409.14039
[37] C.T. Simpson, Higgs bundles and local systems, Inst. HautesÉtudes Sci. Publ. Math. (1992), no. 75, 5-95. · Zbl 0814.32003
[38] Z. Yun, Motives with exceptional Galois groups and the inverse Galois problem, Invent. Math. 196 (2014), no. 2, 267-337. · Zbl 1374.14013
[39] S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc. 27(1) (1992), 68-133. · Zbl 0760.12002
[40] N. Adrianov, Primitive monodromy groups of rational functions with one multiple pole, J. Math. Sci. 226(5) (2017), 548-560. · Zbl 1377.05080
[41] N. Adrianov and A. Zvonkin, Weighted trees with primitive edge rotation groups, J. Math. Sci. 209(2) (2015), 160-191. · Zbl 1357.11063
[42] L. Bary-Soroker, A. Entin and A. Fehm, The minimal ramification problem for rational function fields over finite fields, manuscript (2021).
[43] L. Bary-Soroker and T. Schlank, Sieves and the minimal ramification problem, J. Inst. Math. Jussieu 19(3) (2020), 919-945. · Zbl 1461.11151
[44] N. Boston and N. Markin, The fewest primes ramified in a G-extension of Q, Ann. Sci. Math. Québec 33(2) (2009), 145-154. · Zbl 1219.11165
[45] A. Castillo, C. Hall, R.J. Lemke Oliver, P. Pollack, and L. Thompson, Bounded gaps between primes in number fields and function fields, Proc. Amer. Math. Soc. 143 (2015), 2841-2856. · Zbl 1321.11098
[46] S. D. Cohen, Primitive elements on lines in extensions of finite fields, Contemporary Mathematics 518 (2010). · Zbl 1221.11238
[47] A. Entin, Monodromy of hyperplane sections of curves and decomposition statistics over finite fields, Int. Math. Res. Not. (2019).
[48] B. Plans, On the minimal number of ramified primes in some solvable extensions of Q, Pacific J. Math. 215(2) (2004). · Zbl 1064.11072
[49] A. Grothendieck, Brief an G. Faltings, In: Geometric Galois actions, London Mathe-matical Society Lecture Note Series (1997), 49-58. · Zbl 0901.14002
[50] J. Koenigsmann, On the ’Section Conjecture’ in anabelian geometry, Journal für die reine und angewandte Mathematik 588 (2005), 221-236. · Zbl 1108.14021
[51] F. Pop, On the birational p-adic section conjecture, Compos. Math. 146.3 (2010), 621-637. · Zbl 1210.11072
[52] , Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145-175. · Zbl 0671.12005
[53] M. Lüdtke, The p-adic section conjecture for localisations of curves, Dissertation (2020), online available at: https://www.uni-frankfurt.de/95494079/dissertation.pdf References
[54] H. Davenport, D. J. Lewis, A. Schinzel, Equations of the form f (x) = g(y). Quarterly J. of Math. 12 (1961), 304-312. · Zbl 0121.28403
[55] P. Dèbes, Y. Walkowiak, Bounds for Hilbert’s irreducibility theorem. Pure Appl. Math. Q. 4 (2008), no. 4, Special Issue: In honor of Jean-Pierre Serre. 1059-1083. · Zbl 1213.12005
[56] M.D. Fried, On the diophantine equation f (y) − x = 0. Acta Arith. 19 (1971), 79-87. · Zbl 0233.10035
[57] , The field of definition of function fields and a problem in the reducibility of polynomials in two variables. Illinois J. of Math. 17 (1973), 128-146. · Zbl 0266.14013
[58] , Applications of the classification of simple groups to monodromy, part ii: Dav-enport and Hilbert-Siegel problems, preprint (1986), 1-55.
[59] R. Guralnick, J. Shareshian, Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. Appen-dix by R. Guralnick and R. Stafford. Mem. Amer. Math. Soc. 189 (2007). · Zbl 1140.14026
[60] D. Hilbert,Über die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Co-efficienten. J. reine angew. Math. 110 (1892), 104-129. · JFM 24.0087.03
[61] J. König, D. Neftin, Reducible specializations of polynomials: the nonsolvable case, arXiv:2001.03630 [math.NT] (2020).
[62] P. Müller, Primitive monodromy groups of polynomials. Recent developments in the inverse Galois problem, Contemp. Maths. 186, 385-401, Amer. Math. Soc., 1995. · Zbl 0840.12001
[63] , Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XII (2013), 369-438. · Zbl 1366.20001
[64] , Hilbert’s irreducibility theorem for prime degree and general polynomials. Israel J. Math. 109 (1999), 319-337. · Zbl 0926.12001
[65] D. Neftin, M. Zieve, Monodromy groups of indecom-posable coverings of bounded genus. Preprint (2020).
[66] , Monodromy groups of product type. Preprint (2020).
[67] H. Furusho, p-adic multiple polylogarithms and the p-adic KZ equation, Invent. Math. 155 (2004), 253-286. · Zbl 1061.11034
[68] H. Hirano, M. Morishita, Arithmetic topology in Ihara theory II: Milnor invariants, dilogarithmic Heisenberg coverings and triple power residue symbols, J. of Number Theory, 198 (2019), 211-238. · Zbl 1456.11216
[69] M. Kim, Galois theory and Diophantine geometry, in “Non-abelian fundamental groups and Iwasawa theory” (J. Coates, M.Kim, F.Pop, M.Saïdi, P.Schneider eds.) London Math. Soc. Lect. Note Ser. 393 (2012), 162-187. · Zbl 1237.11001
[70] H. Nakamura, K. Sakugawa, Z. Wojtkowiak Polylogarithmic analogue of the Coleman-Ihara formula, I, Osaka J. Math. 54 (2017), 55-74; Part II, RIMS Kokyuroku Bessatsu B64 (2017), 33-54. · Zbl 1415.11087
[71] H. Nakamura, Z. Wojtkowiak, On explicit formulae for l-adic polylogarithms, in “Arith-metic Fundamental Groups and Noncommutative Algebra” (M.D.Fried, Y.Ihara eds.) Proc. Symp. Pure Math., 70 (2002), 285-294. · Zbl 1191.11022
[72] , Tensor and homotopy criteria for functional equations of l-adic and clas-sical iterated integrals, in “Nonabelian Fundamental Groups and Iwasawa Theory” (J.Coates, M.Kim, F.Pop, M.Saidi, P.Schneider eds.), London Math. Soc. Lecture Note Series, 393 (2012), 258-310 (Cambridge UP). · Zbl 1271.11068
[73] , On distribution formula for complex and l-adic polylogarithms, in “Periods in Quantum Field Theory and Arithmetic” (J.Burgos Gil, K.Ebrahimi-Fard, H.Gangl eds) Springer Proceedings in Mathematics & Statistics 314 (2020), pp.593-619. · Zbl 1456.11121
[74] , On adelic Hurwitz zeta measures, J. London Math. Society 101(3), (2020), 938-959. · Zbl 1467.11110
[75] S. Oi, K. Ueno, The Inversion Formula of Polylogarithms and the Riemann-Hilbert Problem, in “Symmetries, Integrable Systems and Representations” (K.Iohara, S. Morier-Genoud, B. Rémy eds.), Springer Proceedings in Mathematics & Statistics 40 (2013), pp.491-496. · Zbl 1331.11068
[76] D. Shiraishi, On ℓ-adic Galois polylogarithms and triple ℓ-th power residue symbols, Kyushu J. Math. 75 (2021), 95-113. · Zbl 1487.14071
[77] K. Wickelgren, n-nilpotent obstructions to π 1 sections of P 1 − {0, 1, ∞} and Massey products, in “Galois-Teichmüller Theory and Arithmetic Geometry” (H.Nakamura, F.Pop, L.Schneps, A.Tamagawa eds.) Adv. Stud. Pure Math., 63 (2012), 579-600. · Zbl 1321.11116
[78] P. Dèbes, N. Ghazi, Galois covers and the Hilbert-Grunwald property, Ann. Inst. Fourier (Grenoble) 62 (2012), 989-1013. · Zbl 1255.14022
[79] P. Dèbes, J. König, F. Legrand, D. Neftin, Rational pullbacks of Galois covers, to appear in Math. Z..
[80] [DKLN20] , On parametric and generic polynomials with one parameter, J. Pure App. Algebra 25 (2020), 106717. · Zbl 1472.12003
[81] C. Demarche, G. Lucchini Arteche, D. Neftin, The Grunwald problem and approxi-mation properties for homogeneous spaces, Ann. Inst. Fourier 67 (2017), 1009-1033. · Zbl 1441.11283
[82] D. Harari, Quelques propriétés d’approximation reliéesà la cohomologie galoisienne d’un groupe algébrique fini. (French). Bull. Soc. Math. France, 135 (2007), 549-564. · Zbl 1207.11048
[83] Y. Harpaz, O. Wittenberg, Zero-cycles sur les espaces homogènes et problème de Galois inverse, J. Amer. Math. Soc. 33 (2020), 775-805. · Zbl 1469.14053
[84] J. König, F. Legrand, D. Neftin, On the local behavior of specializations of function field extensions, IMRN Vol. 2019 Issue 9, 2951-2980. · Zbl 1456.11220
[85] J. König, D. Neftin, The local dimension of a finite group over a number field, arXiv:2007.05383 [math.NT] (2020) References
[86] P.-H. Chaudouard and G. Laumon, Le lemme fondamental pondéré. I. Constructions géométriques. Compos. Math. 146 (2010), no. 6, 1416-1506. · Zbl 1206.14026
[87] P. Deligne, Comptage de faisceaux l-adiques. Astérisque No. 369 (2015), 285-312. · Zbl 1327.14093
[88] B.C. Ngo, Le lemme fondamental pour les algèbres de Lie Publications Mathématiques de l’IHÉS, Volume 111 (2010), p.1-169 · Zbl 1200.22011
[89] H. Yu, Comptage des systèmes locaux ℓ-adiques sur une courbe, arXiv:1807.04659 [math.AG] (2018)
[90] F. Andreatta, E.Z. Goren, B. Howard, and K. Madapusi Pera. Faltings heights of abelian varieties with complex multiplication. Ann. of Math. (2), 187(2):391-531, 2018. · Zbl 1464.11059
[91] J.H. Bruinier. Borcherds products on O(2, l) and Chern classes of Heegner divisors, volume 1780 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. · Zbl 1004.11021
[92] F. Charles. On the Picard number of K3 surfaces over number fields. Algebra Num-ber Theory, 8(1):1-17, 2014. · Zbl 1316.14069
[93] Birational boundedness for holomorphic symplectic varieties, Zarhin’s trick for K3 surfaces, and the Tate conjecture. Ann. of Math. (2), 184(2):487-526, 2016. · Zbl 1387.14102
[94] Exceptional isogenies between reductions of pairs of elliptic curves. Duke Math. J., 167(11):2039-2072, 2018. · Zbl 1450.11052
[95] B. Howard and K. Madapusi Pera. Arithmetic of Borcherds products, arXiv:1710.00347 [math.NT] (2017)
[96] K. Ito, T. Ito, and T. Koshikawa. CM liftings of K3 surfaces over finite fields and their applications to the Tate conjecture, arXiv:1809.09604 [math.NT] (2018)
[97] M. Kisin. Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc., 23(4):967-1012, 2010. · Zbl 1280.11033
[98] D. Maulik. Supersingular K3 surfaces for large primes. Duke Math. J., 163(13):2357-2425, 2014. With an appendix by Andrew Snowden. · Zbl 1308.14043
[99] K. Madapusi Pera. The Tate conjecture for K3 surfaces in odd characteristic. In-vent. Math., 201(2):625-668, 2015. · Zbl 1329.14079
[100] Integral canonical models for spin Shimura varieties. Compos. Math., 152(4):769-824, 2016. · Zbl 1391.11079
[101] N.O. Nygaard. Tate’s conjecture for ordinary K3 surfaces over finite fields. Invent. Math., 74(2): 213-237, 1983. · Zbl 0557.14002
[102] N. Nygaard and A. Ogus. Tate’s conjecture for K3 surfaces of finite height. Ann. of Math. (2), 122(3):461-507, 1985. · Zbl 0591.14005
[103] K. Oguiso. Local families of K3 surfaces and applications. J. Algebraic Geom., 12(3):405-433, 2003. · Zbl 1085.14510
[104] A.N. Shankar, A. Shankar, Y. Tang, and S. Tayou. Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields, arXiv:1909.07473 [math.NT] (2019).
[105] A.N. Shankar and Y. Tang. Exceptional splitting of reductions of abelian surfaces. Duke Math. J., 169 (3): 397-434, 2020. · Zbl 1489.11085
[106] S. Tayou. On the equidistribution of some Hodge loci. J. Reine Angew. Math.,762: 167-194, 2020. · Zbl 1465.14017
[107] C. Voisin. Théorie de Hodge et géométrie algébrique complexe. Collection SMF. Société Mathématique de France, 2002. · Zbl 1032.14001
[108] V.G. Drinfel’d, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q|Q), Leningrad Math. J. 2 (1991), no. 4, 829-860. · Zbl 0728.16021
[109] D. Harbater and L. Schneps, Fundamental groups of moduli and the Grothendieck-Teichmüller group, Trans. Amer. Math. Soc. 352 (2000), no. 7, 3117-3148. · Zbl 0956.14013
[110] Y. Hoshi, A. Minamide and S. Mochizuki, Group-theoreticity of numerical invariants and distinguished subgroups of configuration space groups, RIMS preprint 1870 (2017).
[111] A. Minamide and H. Nakamura, The automorphism groups of the profinite braid groups, arXiv:1904.06749 [math.GT], to appear in Amer. J. Math. (2019).
[112] A. Asok and P.A. Østvaer, A 1 -homotopy theory and contractible varieties: a survey, 52p., arXiv:1903.07851 [math.AG] (2019).
[113] B. Collas and S. Maugeais, On Galois action on stack inertia of moduli spaces of curves, arXiv:1412.4644 [math.AG] (2014).
[114] D. Corwin and T.M. Schlank, Brauer and Etale Homotopy Obstructions to Rational Points on Open Covers, arXiv:2006.11699 [math.NT] (2020).
[115] Y. Harpaz and T.M. Schlank, Homotopy obstructions to rational points in Torsors,étale homotopy and applications to rational points, 280-413, London Math. Soc. Lecture Note Ser., 405, Cambridge Univ. Press, Cambridge, 2013. · Zbl 1298.14025
[116] Y. Ihara and H. Nakamura, Some illustrative examples for anabelian geometry in high dimensions, in Geometric Galois actions, 1, 127-138, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0919.14011
[117] G. Quick, Continuous group actions on profinite spaces. J. Pure Appl. Algebra 215, 1024-1039 (2011) · Zbl 1227.55013
[118] A. Schmidt and J. Stix, Anabelian geometry withétale homotopy types, Ann. of Math. (2) 184, no. 3, 817-868 (2016) References · Zbl 1405.14053
[119] Y. Hoshi, The Grothendieck conjecture for hyperbolic polycurves of lower dimension, J. Math. Sci. Univ. Tokyo 21 (2014), no. 2, 153-219. · Zbl 1342.14059
[120] Y. Hoshi, A. Minamide, and S. Mochizuki, Group-theoreticity of numerical invari-ants and distinguished subgroups of configuration space groups, RIMS preprint 1870 (2017).
[121] H. Nakamura and N. Takao, Galois rigidity of pro-l pure braid groups of algebraic curves, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1079-1102. · Zbl 0927.14008
[122] K. Sawada, Reconstruction of invariants of configuration spaces of hyperbolic curves from associated Lie algebras, RIMS preprint 1896 (2018).
[123] K. Sawada, On surjective homomorphisms from a configuration space group to a surface group, RIMS preprint 1921 (2020).
[124] A. Schmidt and J. Stix, Anabelian geometry withétale homotopy types, Ann. of Math. (2) 184 (2016), no. 3, 817-868. · Zbl 1405.14053
[125] V.G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q), Algebra i Analiz 2 (1990), 149-181. · Zbl 0718.16034
[126] J.L. Dyer, E.K. Grossman, The Automorphism Groups of the Braid Groups, Amer. J. Math. 103 (1981), 1151-1169. · Zbl 0476.20026
[127] D. Harbater, L. Schneps, Fundamental groups of moduli and the Grothendieck-Teichmüller group, Trans. Amer. Math. Soc. 352 (2000), 3117-3148. · Zbl 0956.14013
[128] Y. Hoshi, A. Minamide, S. Mochizuki, Group-theoreticity of numerical invariants and distinguished subgroups of configuration space groups, RIMS Preprint 1870 (March 2017).
[129] Y. Ihara, Braids, Galois groups, and some arithmetic functions, Proc. Intern. Congress of Math. Kyoto 1990, 99-120. · Zbl 0757.20007
[130] Y. Ihara, On the embedding of Gal(Q/Q) into GT , in The Grothendieck Theory of Dessins d’Enfants, London Math. Soc. Lecture Note Series 200, Cambridge Univ. Press (1994), 289-305. · Zbl 0798.00001
[131] Y. Ihara, M. Matsumoto, On Galois Actions on Profinite Completions of Braid Groups, Recent Developments in the Inverse Galois Problem, Contemp. Math. 186, AMS (1995), 173-200. · Zbl 0848.11058
[132] A. Minamide, H. Nakamura, The automorphism groups of the profinite braid groups, to appear in Amer. J. Math.
[133] N. Nikolov, D. Segal, Finite index subgroups in profinite groups, C. R. Math. Acad. Sci. Paris 337 (2003), 303-308. · Zbl 1033.20029
[134] The Chabauty-Coleman method can be used to determine the finite set of rational points on certain curves of genus at least 2, using the construction of Coleman’s p-adic line integrals.
[135] Let X be a smooth projective curve of genus g over Q, let J denote its Jacobian, and let r denote the rank of J(Q). The Chabauty-Coleman method produces a finite set of p-adic points containing the set X(Q) when r < g. This finite set of p-adic points is computed as the zero locus of a Coleman integral. When r ≥ g, less is known. One promising technique is Kim’s nonabelian extension [Kim05, Kim09, Kim10] of Chabauty. Some progress has been made on the first nonabelian step of this, the quadratic Chabauty method, developed in a few directions in joint work with A. Besser, N. Dogra, S. Müller, J. Tuitman, and J. Vonk [BBM16, BD18, BD20, BDMTV19], which can apply when the rank is equal to the genus. Here a finite set of p-adic points containing X(Q) is cut out using iterated p-adic integrals. There are some examples of modular curves X/Q where we have been able to use quadratic Chabauty to determine X(Q).
[136] We present a selection of examples, from the “cursed” split Cartan modular curve
[137] J. S. Balakrishnan, A. Besser, and J. S. Müller. Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves. J. Reine Angew. Math., 720:51-79, 2016. · Zbl 1350.11067
[138] J. S. Balakrishnan and N. Dogra. Quadratic Chabauty and rational points, I: p-adic heights. Duke Math. J., 167(11):1981-2038, 2018. With an appendix by J. Steffen Müller. · Zbl 1401.14123
[139] Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties. IMRN, 2020. rnz362.
[140] J. S. Balakrishnan, N. Dogra, J.S. Müller, J. Tuitman, and J. Vonk. Explicit Chabauty-Kim for the split Cartan modular curve of level 13. Ann. of Math. (2), 189(3):885-944, 2019. · Zbl 1469.14050
[141] Quadratic Chabauty for modular curves: Algorithms and examples. 2021.
[142] M. Kim. The motivic fundamental group of P 1 {0, 1, ∞} and the theorem of Siegel. Invent. Math., 161(3):629-656, 2005. · Zbl 1090.14006
[143] The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci., 45(1):89-133, 2009. · Zbl 1165.14020
[144] Massey products for elliptic curves of rank 1. J. Amer. Math. Soc., 23:725-747, 2010. Tannakian Cebotarev density theorems Anna Cadoret (joint work with Akio Tamagawa) References · Zbl 1225.11077
[145] A. Cadoret, Ultraproduct Weil II for curves and integral models in compatible families of ℓ-adic local systems, Preprint, 2019.
[146] A. Cadoret, La conjecture des compagnons (d’après Deligne, Drinfeld, L. Lafforgue, T. Abe,...), Séminaire Bourbaki 71e année, 2018-2019, no. 1156, 2019.
[147] M. D’Addezio, Parabolicity conjecture of F-isocrystals, arXiv:2012.12879 [math.AG] (2020).
[148] U. Hartl and H. Pál, Crystalline Chebotarëv density theorems, arXiv:1811.07084 [math.NT] (2018).
[149] D. Kazhdan, M. Larsen and Y. Varshavsky, The Tannakian formalism and the Lang-lands conjectures, Algebra Number Theory 8, p. 243-256, 2014. References · Zbl 1395.11127
[150] A. Bachmayr, D. Harbater, J. Hartmann, M. Wibmer, Differential embedding problems over complex function fields, Doc. Math. 23 (2018), 241-291. · Zbl 1436.12006
[151] V.I. Chernousov, The Hasse principle for groups of type E8, Doklady Akademii Nauk SSSR 360 (1989), 1059-1063; translation in Soviet Math. Doklady 39 (1989), 592-596. · Zbl 0703.20040
[152] J.-L. Colliot-Thélène, Rational connectedness and Galois covers of the projective line, Ann. of Math. 151 (2000), 359-373. · Zbl 0990.12003
[153] J.-L. Colliot-Thélène, D. Harbater, J. Hartmann, D. Krashen, R. Parimala, V. Suresh. Local-global principles for constant reductive groups over semi-global fields, 2021 manuscript. · Zbl 1440.14035
[154] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. HautesÉtudes Sci. Publ. Math. 36 (1969), 75-109. · Zbl 0181.48803
[155] P. Gille, R. Parimala, V. Suresh, Local triviality for G-torsors, arXiv:1901.04722 [math.AG] (2019). · Zbl 1478.14028
[156] D. Harbater, Patching and Galois theory, Galois groups and fundamental groups, 313-424, Math. Sci. Res. Inst. Publ., vol. 41, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1071.14029
[157] D. Harbater, J. Hartmann, D. Krashen, Local-global principles for torsors over arithmetic curves, Amer. J. Math. 137 (2015), 1559-1612. · Zbl 1348.11036
[158] L. Moret-Bailly, Construction de revêtements de courbes pointées, J. Algebra 240 (2001), 505-534. · Zbl 1047.14013
[159] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80. · Zbl 0468.14007
[160] J.-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, Berlin, Heidelberg, New York, 2000.
[161] English translation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. References · Zbl 1007.03002
[162] P. Boavida de Brito, G. Horel, Galois symmetries of knot spaces, arXiv:2002.01470 [math.AT] (2020), to appear in Compositio Mathematica. · Zbl 1467.57001
[163] P. Boavida de Brito, G. Horel, On the formality of the little disks operad in positive characteristic, arXiv:1903.09191 [math.AT] (2019), to appear in Jour. of London Math. Soc. · Zbl 1480.18019
[164] P. Boavida de Brito, M. Weiss, Spaces of smooth embeddings and configuration cate-gories, Journal of Topology 11 (2018) 65-143. · Zbl 1390.57018
[165] P. Boavida de Brito, M. Weiss, The configuration category of a product, Proc. Amer. Math. Soc. 146 (2018), 4497-4512. · Zbl 1397.57048
[166] A. Grothendieck, Esquisse d’un programme, in Around Grothendieck’s Esquisse D’un Programme, London Math. Soc. Lecture Note Series 242 (1997), 5-48. · Zbl 0901.14001
[167] G. Horel, Profinite completion of operads and the Grothendieck-Teichmüller group, Advances in Math. 321 (2017), 326-390. · Zbl 1385.55007
[168] D. Kosanović, A geometric approach to the embedding calculus knot invariants, PhD Thesis at the University of Bonn, 2020.
[169] D. Vaintrob, Moduli of framed formal curves, arXiv:1910.11550 [math.AG] (2019).
[170] Y. Hoshi, The absolute anabelian geometry of quasi-tripods, to appear in Kyoto J. Math. · Zbl 1493.14048
[171] Y. Hoshi, A note on an anabelian open basis for a smooth variety, Tohoku Math. J. (2) 72 (2020), 537-550. · Zbl 1473.14054
[172] S. Mochizuki, Topics surrounding the anabelian geometry of hyperbolic curves, Galois groups and fundamental groups, 119-165, Math. Sci. Res. Inst. Publ., 41, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1053.14029
[173] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves, J. Math. Kyoto Univ. 47 (2007), 451-539. · Zbl 1143.14305
[174] A. Schmidt and J. Stix, Anabelian geometry withétale homotopy types, Ann. of Math. (2) 184 (2016), 817-868. · Zbl 1405.14053
[175] A. Tamagawa, The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), 135-194. · Zbl 0899.14007
[176] G. Anderson and Y. Ihara, Pro-l branched coverings of P 1 and higher circular l-units, Ann. of Math. (2) 128 (1988), no. 2, 271-293. · Zbl 0692.14018
[177] G.W. Anderson, Torsion points on Fermat Jacobians, roots of circular units and relative singular homology, Duke Math. J. 54 (1987), no. 2, 501-561. · Zbl 1370.11069
[178] R.F. Coleman, Anderson-Ihara theory: Gauss sums and circular units, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 55-72. · Zbl 0733.14012
[179] R. Davis, R. Pries, V. Stojanoska, and K. Wickelgren, Galois action on the homology of Fermat curves, Directions in number theory, Assoc. Women Math. Ser., vol. 3, Springer, [Cham], 2016, pp. 57-86. · Zbl 1416.11045
[180] , The Galois action and cohomology of a relative homology group of Fermat curves, J. Algebra 505 (2018), 33-69. · Zbl 1456.11217
[181] R. Davis, R. Pries, and K. Wickelgren, The Galois action on the lower central series of the fundamental group of the Fermat curve, arXiv:1808.04917 [math.NT] (2018).
[182] R. Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), no. 3, 597-651. · Zbl 0915.57001
[183] Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. (2) 123 (1986), no. 1, 43-106. MR 825839 (87c:11055) · Zbl 0595.12003
[184] J.P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16-23. · Zbl 0198.34601
[185] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), 101-190. · Zbl 0055.25103
[186] D.E. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39 (1977), no. 2, 95-127. · Zbl 0357.14010
[187] J.-P. Serre, Lie algebras and Lie groups, Lectures given at Harvard University, vol. 1964, W. A. Benjamin, Inc., New York-Amsterdam, 1965. · Zbl 0132.27803
[188] , Mordell-Weil groups of the Jacobian of the 5th Fermat curve, Proc. Amer. Math. Soc. 125 (1997), no. 3, 663-668. · Zbl 0858.14014
[189] F. Bogomolov nd Y. Tschinkel, Commuting elements of Galois groups of function fields. Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 75-120, Int. Press Lect. Ser., 3, I, 2002. · Zbl 1048.11090
[190] G .Cornelissen, B. de Smit, X. Li, M. Marcolli and H. Smit, Characterization of global fields by Dirichlet L-series, Research in Number Theory vol. 5, 7 (2019). · Zbl 1460.11137
[191] Y. Hoshi, Mono-anabelian reconstruction of number fields, On the examination and further development of inter-universal Teichmüller theory 2015, 1-77, RIMS Kôkyûroku Bessatsu, B76, Res. Inst. Math. Sci. (RIMS), Kyoto, 2019. · Zbl 1431.11125
[192] F. Pop, On Grothendieck’s conjecture of birational anabelian geometry. Ann. of Math. (2) 139 (1994), no. 1, 145-182. · Zbl 0814.14027
[193] F. Pop, Z/ℓ abelian-by-central Galois theory of prime divisors. The arithmetic of fundamental groups-PIA 2010, 225-244, Contrib. Math. Comput. Sci., 2, Springer, Heidelberg, 2012. · Zbl 1346.11061
[194] M. Saïdi and A. Tamagawa, A refined version of Grothendieck’s birational anabelian conjecture for curves over finite fields. Adv. Math. 310 (2017), 610-662. · Zbl 1388.14090
[195] M. Saïdi and A Tamagawa, The m-step solvable anabelian geometry of number fields, arXiv:1909.08829 [math.NT] (2019).
[196] H. Smit, L-series and isomorphisms of number fields, arXiv:1901.06198 [math.NT] (2019).
[197] A. Topaz, Commuting-Liftable Subgroups of Galois Groups II. J. reine angew. Math. (2017) 730, pg. 65-133 · Zbl 1407.12003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.