×

On adelic Hurwitz zeta measures. (English) Zbl 1467.11110

In this article, the authors construct a \(\hat{\mathbb{Z}}\)-valued measure on \(\hat{\mathbb{Z}}\) which interpolates \(p\)-adic Hurwitz zeta functions for all \(p\). For that end, they use a geometrical interpretation of the translation of a measure and a consequence of the inversion formula.

MSC:

11S40 Zeta functions and \(L\)-functions
11G55 Polylogarithms and relations with \(K\)-theory
11F80 Galois representations
11R23 Iwasawa theory
14H30 Coverings of curves, fundamental group

References:

[1] H.Cohen, Number theory volume II: analytic and modern tools, Graduate Texts in Mathematics 240 (Springer, Berlin, 2007). · Zbl 1119.11002
[2] P.Deligne, ‘Le groupe fondamental de la droite projective moins trois points’, Galois groups over Q, Mathematical Sciences Research Institute Publications 16 (eds Y.Ihara (ed.), K.Ribet (ed.) and J.‐P.Serre (ed.); Springer, New York, 1989) 79-297. · Zbl 0742.14022
[3] H.Nakamura and Z.Wojtkowiak, ‘On explicit formulae for \(l\)‐adic polylogarithms’, Proc. Sympos. Pure Math.70 (2002) 285-294. · Zbl 1191.11022
[4] H.Nakamura and Z.Wojtkowiak, ‘Tensor and homotopy criteria for functional equations of \(\ell \)‐adic and classical iterated integrals’, Non‐abelian fundamental groups and Iwasawa theory, London Mathematical Society Lecture Note Series 393 (eds J.Coates (ed.), M.Kim (ed.), F.Pop (ed.), M.Saïdi (ed.) and P.Schneider (ed.); Cambridge University Press, Cambridge, 2012) 258-310. · Zbl 1271.11068
[5] H.Nakamura and Z.Wojtkowiak, ‘On distribution formula for complex and \(\ell \)‐adic polylogarithms’, Periods in quantum field theory and arithmetic (eds J.Burgos (ed.), K.Ebrahimi‐Fard (ed.) and H.Gangl (ed.)), in press arXiv:1711.03501 [math.NT].
[6] K.Shiratani, ‘On a kind of \(p\)‐adic zeta functions’, Algebraic number theory, International Symposium, Kyoto (ed. S.Iyanaga (ed.); Japan Society for the Promotion of Science, Tokyo, 1976) 213-217. · Zbl 0372.12018
[7] L. C.Washington, Introduction to cyclotomic fields, 2nd edn, Graduate Texts in Mathematics 83 (Springer, Berlin, 1997). · Zbl 0966.11047
[8] Z.Wojtkowiak, ‘On \(l\)‐adic iterated integrals, II: functional equations and \(l\)‐adic polylogarithms’, Nagoya Math. J.177 (2005) 117-153. · Zbl 1161.11363
[9] Z.Wojtkowiak, ‘On \(\hat{\mathbb{Z}} \)‐zeta function’, Iwasawa theory 2012, Contributions in Mathematical and Computational Sciences 7 (eds A.Bouganis (ed.) and O.Venjakob (ed.); Springer, Berlin, 2014) 471-483. · Zbl 1361.11047
[10] Z.Wojtkowiak, ‘On \(\ell \)‐adic Galois \(L\)‐functions’, Algebraic geometry and number theory, Progress in Mathematics Birkhauser 321 (eds H.Mourtada (ed.), C. C.Sarıoğlu (ed.), C.Soulé (ed.) and A.Zeytin (ed.); Springer International Publishing, 2017) 161-209. · Zbl 1410.11093
[11] Z.Wojtkowiak, ‘A polylogarithmic measure associated with a path on \(\mathbf{P}^1 \smallsetminus \{ 0 , 1 , \infty \}\) and \(p\)‐adic Hurwitz zeta function’, Preprint, arXiv:1410.6018 [math.NT].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.