×

Fundamental groups of moduli and the Grothendieck-Teichmüller group. (English) Zbl 0956.14013

Author’s summary: Let \({\mathcal M}_{0,n}\) denote the moduli space of Riemann spheres with \(n\) ordered marked points. In this article we define the group \(\text{Out}_n^\#\) of quasi-special symmetric outer automorphisms of the algebraic fundamental group \(\widehat\pi_1({\mathcal M}_{0,n})\) for all \(n\geq 4\) to be the group of outer automorphisms respecting the conjugacy classes of the inertia subgroups of \(\widehat\pi_1 ({\mathcal M}_{0, n})\) and commuting with the group of outer automorphisms of \(\widehat\pi_1({\mathcal M}_{0,n})\) obtained by permuting the marked points. Our main result states that \(\text{Out}_n^\#\) is isomorphic to the Grothendieck-Teichmüller group \(\widehat {GT}\) for all \(n\geq 5\).

MSC:

14F35 Homotopy theory and fundamental groups in algebraic geometry
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
14H10 Families, moduli of curves (algebraic)
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
Full Text: DOI

References:

[1] G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267 – 276, 479 (Russian). · Zbl 0409.12012
[2] Martin P. Holland, Varieties which are almost \?-affine, Bull. London Math. Soc. 25 (1993), no. 4, 321 – 326. · Zbl 0796.16019 · doi:10.1112/blms/25.4.321
[3] M. Fried, Fields of definition of function fields and Hurwitz families — groups as Galois groups, Comm. Algebra 5 (1977), no. 1, 17 – 82. · Zbl 0478.12006 · doi:10.1080/00927877708822158
[4] Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. · Zbl 0625.12001
[5] Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 5 – 48 (French, with French summary). With an English translation on pp. 243 – 283. · Zbl 0901.14001
[6] A. Grothendieck, La longue marche in à travers la théorie de Galois, 1981 manuscript, University of Montpellier preprint series 1996, edited by J. Malgoire.
[7] David Harbater, Fundamental groups and embedding problems in characteristic \?, Recent developments in the inverse Galois problem (Seattle, WA, 1993) Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 353 – 369. · Zbl 0858.14013 · doi:10.1090/conm/186/02191
[8] David Harbater and Leila Schneps, Approximating Galois orbits of dessins, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 205 – 230. · Zbl 0898.14011
[9] Yasutaka Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. (2) 123 (1986), no. 1, 43 – 106. · Zbl 0595.12003 · doi:10.2307/1971352
[10] Yasutaka Ihara, Automorphisms of pure sphere braid groups and Galois representations, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 353 – 373. · Zbl 0728.20033
[11] Yasutaka Ihara, On the stable derivation algebra associated with some braid groups, Israel J. Math. 80 (1992), no. 1-2, 135 – 153. · Zbl 0782.20034 · doi:10.1007/BF02808157
[12] Yasutaka Ihara, Braids, Galois groups, and some arithmetic functions, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 99 – 120. · Zbl 0757.20007
[13] Yasutaka Ihara, On the embedding of \?\?\?(\?/\?) into \Hat \?\?, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 289 – 321. With an appendix: the action of the absolute Galois group on the moduli space of spheres with four marked points by Michel Emsalem and Pierre Lochak. · Zbl 0849.12005
[14] Yasutaka Ihara and Makoto Matsumoto, On Galois actions on profinite completions of braid groups, Recent developments in the inverse Galois problem (Seattle, WA, 1993) Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 173 – 200. · Zbl 0848.11058 · doi:10.1090/conm/186/02180
[15] Yasutaka Ihara and Hiroaki Nakamura, Some illustrative examples for anabelian geometry in high dimensions, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 127 – 138. · Zbl 0919.14011
[16] Pierre Lochak and Leila Schneps, The Grothendieck-Teichmüller group and automorphisms of braid groups, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 323 – 358. · Zbl 0827.20050
[17] Hiroaki Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sci. Univ. Tokyo 1 (1994), no. 1, 71 – 136. · Zbl 0901.14012
[18] Hiroaki Nakamura, Galois rigidity of profinite fundamental groups, Sūgaku 47 (1995), no. 1, 1 – 17 (Japanese). · Zbl 0863.12004
[19] Hiroaki Nakamura, Galois representations in the profinite Teichmüller modular groups, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 159 – 173. · Zbl 0911.14014
[20] H. Nakamura, Limits of Galois representations in fundamental groups along maximal degeneration of marked curves: I, Amer. J. Math. 121 (1999), 315-358. CMP 99:10
[21] Florian Pop, Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math. 120 (1995), no. 3, 555 – 578. · Zbl 0842.14017 · doi:10.1007/BF01241142
[22] Leila Schneps, The Grothendieck-Teichmüller group \Hat \?\?: a survey, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 183 – 203. · Zbl 0910.20019 · doi:10.1017/CBO9780511666124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.