×

Galois symmetries of knot spaces. (English) Zbl 1467.57001

A long knot is a smooth embedding \({\mathbb{R}}^1\hookrightarrow {\mathbb{R}}^d\) which coincides with the standard embedding in the complement of \([0,1]\). The authors study the Goodwillie-Weiss tower of the space of long knots \(\mathrm{emb}_{\mathrm c}({\mathbb{R}}^1, {\mathbb{R}}^d)\). There is a spectral sequence associated to the Goodwillie-Weiss tower, where the \(E^1\)-page consists of the homotopy groups of the layers of the tower. This spectral sequence is well understood rationally, by [G. Arone et al., Math. Res. Lett. 15, No. 1, 1–14 (2008; Zbl 1148.57033)]. In this paper, the authors consider the spectral sequence associated to the Goodwillie-Weiss tower, at a prime \(p\). They show that the differential \[ d^r_{-s,t}\colon E^r_{-s,t}\to E^r_{-s-r, t+r-1} \] vanishes \(p\)-locally, if \(r-1\) is not a multiple of \((p-1)(d-2)\) and if \[ t<2p-2+(s-1)(d-2). \] The proof of the result relies on the relation between the Goodwillie-Weiss tower and the little disks operad, and the existence of Galois symmetries on the little disks operad. The result yields a computation of some homotopy groups of the layers of the Goodwillie-Weiss tower, for \(d\geq 3\), where the range improves as the prime or the codimension increases.
The authors also prove a homological result: Let \(\overline{\mathrm{emb}}_{\mathrm c}({\mathbb{R}}^1, {\mathbb{R}}^d)\) denote the homotopy fiber of the map \[\mathrm{emb}_{\mathrm c}({\mathbb{R}}^1, {\mathbb{R}}^d) \hookrightarrow\mathrm{imm}_{\mathrm c}({\mathbb{R}}^1, {\mathbb{R}}^d). \] There is a homological Bousfield-Kan spectral sequence \(E^\ast(R)\) related to \(H_\ast(\overline{\mathrm {emb}}_{\mathrm c}({\mathbb{R}}^1, {\mathbb{R}}^d), R)\), where \(R\) is a ring of coefficients. The authors show that for a prime \(p\), the only possibly non-trivial differentials in \(E^\ast({\mathbb{Z}}_p)\) are \(d_{1+n(d-1)(p-1)}\) for \(n\geq 0\).

MSC:

57K10 Knot theory
57R40 Embeddings in differential topology
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
55Q99 Homotopy groups
55P48 Loop space machines and operads in algebraic topology
18F50 Goodwillie calculus and functor calculus
18M60 Operads (general)

Citations:

Zbl 1148.57033

References:

[1] Arone, G., Lambrechts, P., Turchin, V. and Volić, I., Coformality and rational homotopy groups of spaces of long knots, Math. Res. Lett. 15 (2008), 1-15. · Zbl 1148.57033
[2] Bar-Natan, D., On the Vassiliev knot invariants, Topology34 (1995), 423-472. · Zbl 0898.57001
[3] Boavida De Brito, P. and Horel, G., On the formality of the little disks operad in positive characteristic, J. London Math. Soc. (2021), https://doi.org/10.1112/jlms.12442. · Zbl 1480.18019
[4] Boavida De Brito, P. and Weiss, M., Spaces of smooth embeddings and configuration categories, J. Topol. 11 (2018), 65-143. · Zbl 1390.57018
[5] Boavida De Brito, P. and Weiss, M. S., The configuration category of a product, Proc. Amer. Math. Soc. 146 (2018), 4497-4512. · Zbl 1397.57048
[6] Bousfield, A. K., The localization of spaces with respect to homology, Topology14 (1975), 133-150. · Zbl 0309.55013
[7] Bousfield, A. K. and Kan, D. M., Homotopy limits, completions and localizations, , vol. 304 (Springer, Berlin, 1972). · Zbl 0259.55004
[8] Budney, R., Conant, J., Koytcheff, R. and Sinha, D., Embedding calculus knot invariants are of finite type, Algebr. Geom. Topol. 17 (2017), 1701-1742. · Zbl 1377.55011
[9] Budney, R., Conant, J., Scannell, K. P. and Sinha, D., New perspectives on self-linking, Adv. Math. 191 (2005), 78-113. · Zbl 1078.57011
[10] Cisinski, D. and Moerdijk, I., Dendroidal sets and simplicial operads, J. Topol. 6 (2013), 705-756. · Zbl 1291.55005
[11] Conant, J., Homotopy approximations to the space of knots, Feynman diagrams, and a conjecture of Scannell and Sinha, Amer. J. Math. 130 (2008), 341-357. · Zbl 1148.57034
[12] Conant, J. and Teichner, P., Grope cobordism and Feynman diagrams, Math. Ann. 328 (2004), 135-171. · Zbl 1054.57014
[13] Drinfel’d, V. G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(\text{Gal}(\bar{\textbf{Q}}/\textbf{Q})\), Algebra i Analiz2 (1990), 149-181. · Zbl 0718.16034
[14] Dwyer, W. and Hess, K., Long knots and maps between operads, Geom. Topol. 16 (2012), 919-955. · Zbl 1255.18009
[15] Furusho, H., Galois action on knots I: Action of the absolute Galois group, Quantum Topol. 8 (2017), 295-360. · Zbl 1371.14029
[16] Goodwillie, T. G. and Klein, J. R., Multiple disjunction for spaces of smooth embeddings, J. Topol. 8 (2015), 651-674. · Zbl 1329.57029
[17] Goodwillie, T. G. and Weiss, M., Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999), 103-118. · Zbl 0927.57028
[18] Göppl, F., A spectral sequence for spaces of maps between operads, Preprint (2018), arXiv:1810.05589. · Zbl 1410.18001
[19] Gusarov, M., On n-equivalence of knots and invariants of finite degree, in Topology of manifolds and varieties, , vol. 18 (American Mathematical Society, Providence, RI, 1994), 173-192. · Zbl 0865.57007
[20] Horel, G., Groupe de galois et espace des noeuds, in SMF 2018: Congrès de la SMF, , vol. 33 (Société Mathématique de France, Paris, 2019), 273-282. · Zbl 1458.57012
[21] Kassel, C. and Turaev, V., Chord diagram invariants of tangles and graphs, Duke Math. J. 92 (1998), 497-552. · Zbl 0947.57010
[22] Kosanović, D., Embedding calculus and grope cobordism of knots, Preprint (2020), arXiv:2010.05120.
[23] Lambrechts, P., Turchin, V. and Volić, I., The rational homology of spaces of long knots in codimension \(>2\), Geom. Topol. 14 (2010), 2151-2187. · Zbl 1222.57020
[24] Muro, F., Homotopy theory of non-symmetric operads. II: Change of base category and left properness, Algebr. Geom. Topol. 14 (2014), 229-281. · Zbl 1281.18001
[25] Shi, Y., Goodwillie’s cosimplicial model for the space of long knots and its applications, Preprint (2020), arXiv:2012.04036.
[26] Sinha, D., Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), 461-486. · Zbl 1112.57004
[27] Sinha, D. P., The topology of spaces of knots: cosimplicial models, Amer. J. Math. 131 (2009), 945-980. · Zbl 1184.57023
[28] Turchin, V., Delooping totalization of a multiplicative operad, J. Homotopy Relat. Struct. 9 (2014), 349-418. · Zbl 1350.18017
[29] Vasil’ev, V. A., Complements of discriminants of smooth maps: topology and applications (revised edition), in Translations of Mathematical Monographs, vol. 98 (American Mathematical Society, Providence, RI, 1994). · Zbl 0826.55001
[30] Volić, I., Finite type knot invariants and the calculus of functors, Compos. Math.142 (2006), 222-250. · Zbl 1094.57017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.