×

Embedding calculus knot invariants are of finite type. (English) Zbl 1377.55011

In this paper, the authors advance an ongoing program of connecting the theory of finite type invariants of classical knots to the Taylor tower for knots given by the theory of embedding (or manifold) calculus of functors. It is known that the “algebraic” Taylor tower classifies finite type invariants [I. Volić, Compos. Math. 142, No. 1, 222–250 (2006; Zbl 1094.57017)], but only over the rationals. In addition, type \(n-1\) invariants in that setting only appear in stage \(2(n-1)\) of the tower. It has thus been a long-standing conjecture [R. Budney et al., Adv. Math. 191, No. 1, 78–113 (2005; Zbl 1078.57011)] that integral type \(n-1\) invariants are in fact classified by the \(n\)th stage of the Taylor tower. Furthermore, it has been conjectured that the Taylor tower gives abelian group-valued invariants that are compatible with the connected sum of knots.
The main results in this paper are that, indeed, there is a group structure on the stages of the Taylor tower that is compatible with connected sum and that the Taylor tower contains type \(n-1\) invariants in stage \(n\). To establish these results, the authors employ some standard tools that have proved to be fruitful in the setting, like cubical and cosimplicial diagrams (and associated spectral sequences), but also bring in novel approaches, most notable of which are the action of the operad of little intervals \(\mathcal C_1\) and Habiro’s clasper surgery.
In a little more detail, the authors look at the map \[ \text{AM}^{\text{fr}}_n\longrightarrow \text{AM}^{\text{fr}}_{n-1} \] between stages of the Taylor tower for classical long knots modulo immersions, \(\text{Emb}^{\text{fr}}(\mathbb R, \mathbb R^3)\). They show that this is a fibration of spaces with \(\mathcal C_1\) action. The canonical map \[ \text{Emb}^{\text{fr}}(\mathbb R, \mathbb R^3) \longrightarrow \text{AM}^{\text{fr}}_n \] is then shown to be surjective on components and to preserve the \(\mathcal C_1\) action (and is thus multiplicative). Lastly, using Habiro’s characterization of finite type invariants via clasper surgery, the authors show that the map \[ \pi_0\text{Emb}^{\text{fr}}(\mathbb R, \mathbb R^3) \longrightarrow \pi_0\text{AM}^{\text{fr}}_n \] is an invariant of finite type \(n-1\).
The paper does not go as far as showing that the Taylor tower for knots modulo immersions gives all finite type invariants over the integers, but it offers a roadmap for establishing this result. One of the main ingredients would be the collapse of the spectral sequence associated to the Taylor tower.

MSC:

55P65 Homotopy functors in algebraic topology
57M25 Knots and links in the \(3\)-sphere (MSC2010)

References:

[1] 10.1007/978-3-540-38117-4 · doi:10.1007/978-3-540-38117-4
[2] 10.1016/j.top.2006.09.001 · Zbl 1114.57003 · doi:10.1016/j.top.2006.09.001
[3] 10.1016/j.aim.2004.03.004 · Zbl 1078.57011 · doi:10.1016/j.aim.2004.03.004
[4] 10.1353/ajm.2008.0020 · Zbl 1148.57034 · doi:10.1353/ajm.2008.0020
[5] 10.1112/S0010437X06002697 · doi:10.1112/S0010437X06002697
[6] 10.1016/S0040-9383(03)00031-4 · Zbl 1041.57003 · doi:10.1016/S0040-9383(03)00031-4
[7] 10.2140/gt.2012.16.919 · Zbl 1255.18009 · doi:10.2140/gt.2012.16.919
[8] 10.1142/S021821651350017X · Zbl 1270.57021 · doi:10.1142/S021821651350017X
[9] 10.1007/BF00535644 · Zbl 0776.55008 · doi:10.1007/BF00535644
[10] 10.1112/jtopol/jtn022 · Zbl 1168.57017 · doi:10.1112/jtopol/jtn022
[11] 10.2140/gt.1999.3.103 · Zbl 0927.57028 · doi:10.2140/gt.1999.3.103
[12] 10.1016/S0040-9383(97)00026-8 · Zbl 0949.57004 · doi:10.1016/S0040-9383(97)00026-8
[13] 10.2140/gt.2000.4.1 · Zbl 0941.57015 · doi:10.2140/gt.2000.4.1
[14] 10.1112/jlms/s1-30.2.154 · Zbl 0064.17301 · doi:10.1112/jlms/s1-30.2.154
[15] 10.2140/gt.2010.14.2151 · Zbl 1222.57020 · doi:10.2140/gt.2010.14.2151
[16] 10.1090/conm/293/04948 · doi:10.1090/conm/293/04948
[17] 10.1090/S0894-0347-03-00419-3 · Zbl 1014.18005 · doi:10.1090/S0894-0347-03-00419-3
[18] ; McClure, Amer. J. Math., 126, 1109 (2004) · Zbl 1064.55008
[19] 10.2140/pjm.2008.238.119 · Zbl 1149.57021 · doi:10.2140/pjm.2008.238.119
[20] 10.1017/CBO9781139343329 · doi:10.1017/CBO9781139343329
[21] 10.1155/IMRN/2006/13628 · Zbl 1131.55004 · doi:10.1155/IMRN/2006/13628
[22] 10.1016/S0022-4049(01)00078-0 · Zbl 1004.55010 · doi:10.1016/S0022-4049(01)00078-0
[23] ; Schubert, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 1949, 57 (1949)
[24] 10.1007/s00029-004-0381-7 · Zbl 1061.55013 · doi:10.1007/s00029-004-0381-7
[25] 10.1090/S0894-0347-05-00510-2 · Zbl 1112.57004 · doi:10.1090/S0894-0347-05-00510-2
[26] 10.1353/ajm.0.0061 · Zbl 1184.57023 · doi:10.1353/ajm.0.0061
[27] 10.1090/S0002-9947-2012-05654-6 · Zbl 1275.55007 · doi:10.1090/S0002-9947-2012-05654-6
[28] 10.2307/1969172 · Zbl 0030.41602 · doi:10.2307/1969172
[29] 10.1007/s40062-013-0032-9 · Zbl 1350.18017 · doi:10.1007/s40062-013-0032-9
[30] 10.1112/S0010437X05001648 · Zbl 1094.57017 · doi:10.1112/S0010437X05001648
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.