×

Operads and knot spaces. (English) Zbl 1112.57004

Let \(\mathit{E}_m\) denote the space of embeddings of the unit interval into the \(m\)-dimensional unit cube with endpoints and tangent vectors at those endpoints fixed on opposite faces of the cube, and equipped with a homotopy through immersions to the unknot. For an operad with multiplication \(\mathcal{O}\), J. McClure and J. Smith [Recent progress in homotopy theory. Proceedings of a conference, Baltimore, MD, USA, March 17-27, 2000. Providence, RI: American Mathematical Society (AMS). Contemp. Math. AMS 293, 153–193 (2002; Zbl 1009.18009)] have defined a cosimplicial object \(\mathcal{O}^{\bullet}\). The (homotopy invariant) totalization of \(\mathcal{O}^{\bullet}\) is denoted by \(\widetilde{\mathrm{Tot}}(\mathcal{O}^{\bullet})\). Furthermore, let \(\mathcal{K}_m\) denote the \(m\)th Kontsevich operad introduced by M. Kontsevich [Lett. Math. Phys. 48, 35–72 (1999; Zbl 0945.18008)].
Main Theorem: The totalization of the Kontsevich operad \(\widetilde{\mathrm{Tot}}(\mathcal{K}^{\bullet})\) is homotopy equivalent to the inverse limit of the Taylor tower approximations for \(\mathit{E}_m\) in the calculus of embeddings. Moreover, \(\widetilde{\mathrm{Tot}}^n(\mathcal{K}^{\bullet})\) is the \(n\)th degree approximation. As corollaries, the author derives that for \(m>3\), \(\mathit{E}_m\) is weakly equivalent to \(\widetilde{\mathrm{Tot}}(\mathcal{K}^{\bullet})\). For \(m>3\), he also finds a spectral sequence with \(\mathit{E}^2\)-term given by the Hochschild cohomology of the degree \(m-1\) Poisson operad which converges to the homology of \(\mathit{E}_m\). In another noteworthy theorem, the author uses a result of McClure and Smith to establish that for any \(m\), there is a little two-cubes action on \(\widetilde{\mathrm{Tot}}(\mathcal{K}^{\bullet})\), and that for \(m>3\), \(\mathit{E}_m\) is a two-fold loop space.

MSC:

57Q45 Knots and links in high dimensions (PL-topology) (MSC2010)
18D50 Operads (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)

References:

[1] Scott Axelrod and I. M. Singer, Chern-Simons perturbation theory. II, J. Differential Geom. 39 (1994), no. 1, 173 – 213. · Zbl 0827.53057
[2] A. J. Berrick, F. Cohen, Y. Wong and J. Wu. Configurations, braids, and homotopy groups, J. Amer. Math. Soc. (to appear). · Zbl 1188.55007
[3] J. M. Boardman, Homotopy structures and the language of trees, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 37 – 58.
[4] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. · Zbl 0285.55012
[5] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. · Zbl 0259.55004
[6] A. K. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361 – 394. · Zbl 0623.55009 · doi:10.2307/2374579
[7] R. Budney. Little cubes and long knots. To appear in Topology. · Zbl 1114.57003
[8] -. Topology of spaces of knots in dimension 3. math.GT/0506524.
[9] Ryan Budney, James Conant, Kevin P. Scannell, and Dev Sinha, New perspectives on self-linking, Adv. Math. 191 (2005), no. 1, 78 – 113. · Zbl 1078.57011 · doi:10.1016/j.aim.2004.03.004
[10] F. Cohen. The homology of \( C_{n+1}\) spaces. In Lecture Notes in Mathematics 533 (1976).
[11] William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183 – 225. · Zbl 0820.14037 · doi:10.2307/2946631
[12] Giovanni Gaiffi, Models for real subspace arrangements and stratified manifolds, Int. Math. Res. Not. 12 (2003), 627 – 656. · Zbl 1068.32020 · doi:10.1155/S1073792803209077
[13] Murray Gerstenhaber and Alexander A. Voronov, Homotopy \?-algebras and moduli space operad, Internat. Math. Res. Notices 3 (1995), 141 – 153. · Zbl 0827.18004 · doi:10.1155/S1073792895000110
[14] E. Getzler and J. Jones. Operads, homotopy algebra and iterated integrals for double loop spaces. hep-th/9403055.
[15] Thomas G. Goodwillie, Calculus. II. Analytic functors, \?-Theory 5 (1991/92), no. 4, 295 – 332. · Zbl 0776.55008 · doi:10.1007/BF00535644
[16] Michael Weiss, Embeddings from the point of view of immersion theory. I, Geom. Topol. 3 (1999), 67 – 101. , https://doi.org/10.2140/gt.1999.3.67 Thomas G. Goodwillie and Michael Weiss, Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999), 103 – 118. · Zbl 0927.57028 · doi:10.2140/gt.1999.3.103
[17] Thomas G. Goodwillie, John R. Klein, and Michael S. Weiss, Spaces of smooth embeddings, disjunction and surgery, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 221 – 284. · Zbl 0966.57001
[18] Thomas G. Goodwillie, John R. Klein, and Michael S. Weiss, A Haefliger style description of the embedding calculus tower, Topology 42 (2003), no. 3, 509 – 524. · Zbl 1034.57027 · doi:10.1016/S0040-9383(01)00027-1
[19] T. Goodwillie and J. Klein. Excision statements for spaces of smooth embeddings. In preparation. · Zbl 1329.57029
[20] T. Goodwillie. Excision estimates for spaces of homotopy equivalences. Preprint is available at: http://www.math.brown.edu/faculty/goodwillie.html.
[21] Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. · Zbl 1017.55001
[22] Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35 – 72. Moshé Flato (1937 – 1998). · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[23] -. Operads of little discs in algebra and topology, Lecture at the Mathematical Challenges Conference, UCLA, 2000.
[24] P. Lambrechts and I. Volic. The rational homotopy type of spaces of knots in high codimension. In preparation.
[25] Martin Markl, A compactification of the real configuration space as an operadic completion, J. Algebra 215 (1999), no. 1, 185 – 204. · Zbl 0949.58009 · doi:10.1006/jabr.1998.7709
[26] Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002. · Zbl 1017.18001
[27] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. · Zbl 0285.55012
[28] James E. McClure and Jeffrey H. Smith, A solution of Deligne’s Hochschild cohomology conjecture, Recent progress in homotopy theory (Baltimore, MD, 2000) Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 153 – 193. · Zbl 1009.18009 · doi:10.1090/conm/293/04948
[29] James E. McClure and Jeffrey H. Smith, Cosimplicial objects and little \?-cubes. I, Amer. J. Math. 126 (2004), no. 5, 1109 – 1153. · Zbl 1064.55008
[30] James E. McClure and Jeffrey H. Smith, Operads and cosimplicial objects: an introduction, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 133 – 171. · Zbl 1080.55010 · doi:10.1007/978-94-007-0948-5_5
[31] Guido Mislin, Wall’s finiteness obstruction, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 1259 – 1291. · Zbl 0870.57030 · doi:10.1016/B978-044481779-2/50027-4
[32] Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1 – 16. · Zbl 0138.18302 · doi:10.1016/0040-9383(66)90002-4
[33] David L. Rector, Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helv. 45 (1970), 540 – 552. · Zbl 0209.27501 · doi:10.1007/BF02567352
[34] Kevin P. Scannell and Dev P. Sinha, A one-dimensional embedding complex, J. Pure Appl. Algebra 170 (2002), no. 1, 93 – 107. · Zbl 1004.55010 · doi:10.1016/S0022-4049(01)00078-0
[35] Brooke E. Shipley, Convergence of the homology spectral sequence of a cosimplicial space, Amer. J. Math. 118 (1996), no. 1, 179 – 207. · Zbl 0864.55017
[36] D. Sinha. The topology of spaces of knots. math.AT/0202287. · Zbl 1184.57023
[37] Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. (N.S.) 10 (2004), no. 3, 391 – 428. · Zbl 1061.55013 · doi:10.1007/s00029-004-0381-7
[38] -. Configuration spaces, Hopf invariants, and Whitehead products. In preparation.
[39] Stephen Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327 – 344. · Zbl 0089.18201 · doi:10.2307/1970186
[40] V. Tourtchine, On the homology of the spaces of long knots, Advances in topological quantum field theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 179, Kluwer Acad. Publ., Dordrecht, 2004, pp. 23 – 52. · Zbl 1117.57023 · doi:10.1007/978-1-4020-2772-7_2
[41] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by B. Goldfarb.
[42] Victor A. Vassiliev, Topology of two-connected graphs and homology of spaces of knots, Differential and symplectic topology of knots and curves, Amer. Math. Soc. Transl. Ser. 2, vol. 190, Amer. Math. Soc., Providence, RI, 1999, pp. 253 – 286. · Zbl 0941.57006 · doi:10.1090/trans2/190/13
[43] I. Volic. Finite type knot invariants and calculus of functors. To appear in Compositio Mathematica. math.AT/0401440.
[44] -. Configuration space integrals and Taylor towers for spaces of knots. math.GT/ 0401282. · Zbl 1110.57008
[45] Michael Weiss, Calculus of embeddings, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 2, 177 – 187. · Zbl 0870.57042
[46] Michael Weiss, Embeddings from the point of view of immersion theory. I, Geom. Topol. 3 (1999), 67 – 101. , https://doi.org/10.2140/gt.1999.3.67 Thomas G. Goodwillie and Michael Weiss, Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999), 103 – 118. · Zbl 0927.57028 · doi:10.2140/gt.1999.3.103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.