×

The Tate conjecture for ordinary K 3 surfaces over finite fields. (English) Zbl 0557.14002

Let \(X_ 0\) be an ordinary K 3 surface over a finite field \(k={\mathbb{F}}_ q\), \(q=p^ a\). The Galois group acts on the étale cohomology groups \(H^ 2_{et}(X_ 0\otimes \bar k,{\mathbb{Q}}_{\ell}(1)),\) \(\ell \neq p.\) According to the Tate conjecture on algebraic cycles, the subspace fixed under the Galois action is spanned by cohomology classes of algebraic cycles on \(X_ 0\). This conjecture is proved in the paper.
Half of the paper is devoted to the study of a canonical lifting \(X_{can}\) of \(X_ 0\) over the Witt ring \(W(k)\). \(X_ 0\) is ordinary implies that via the Serre-Tate isomorphism one can get a structure of a formal group on the universal formal deformation space S of \(X_ 0\) over the Witt ring \(W(k)\). Let \({\mathcal X}_{can}\) be the formal lifting obtained by pulling back the universal formal family \({\mathcal X}/S\) along the 0-section \(Spf W(k)\to S.\) \(X_{can}\) is the algebraization of \({\mathcal X}_{can}\). It is proved that \(X_{can}\) is the same as the canonical lifting of Deligne and Illusie (§ 1). - If \(A_{{\mathbb{C}}}\) is the abelian variety associated to \(X_{{\mathbb{C}}}=X_{can}\otimes {\mathbb{C}}\) by Kuga-Satake-Deligne, then theorem 2.7 says that the Galois representation \(H^ 1_{et}(A_{{\mathbb{C}}},{\mathbb{Q}}_ p)\) is semi-simple. This leads to the proof that the reduction \(A_ 0\) of \(A_{{\mathbb{C}}}\) is an ordinary abelian variety when \(X_ 0\) is ordinary (§ 2.8, 2.5). The geometric Frobenius of \(\bar A_ 0\) lifts to an element \(\sigma_ A\in End(A_{{\mathbb{C}}})\times {\mathbb{Q}}\) such that the action of \(\sigma_ A\) on \(H^ 1_{et}(A_{{\mathbb{C}}},{\mathbb{Q}}_{\ell})\) coincides with the action of geometric Frobenius and \(\sigma_ A\) induces an automorphism of the rational Hodge structure \(H^ 1(A_{{\mathbb{C}}},{\mathbb{Q}})\). Also it is proved (§ 3.1, 3.2) that the geometric Frobenius on \(P^ 2_{et}(X_{{\mathbb{C}}},{\mathbb{Q}}_{\ell}(1))\) descends to an autmorphism \(\sigma_ X\) of the rational Hodge structure \(P^ 2(X_{{\mathbb{C}}},{\mathbb{Q}}(1))\). Then there is a commutative diagram \(P^ 2(X_{{\mathbb{C}}},{\mathbb{Q}}(1))\to^{\alpha}End(H^ 1(A_{{\mathbb{C}}},{\mathbb{Q}}))\to^{conj(\sigma_ A)}End(H^ 1(A_{{\mathbb{C}}},{\mathbb{Q}})),\quad P^ 2(X_{{\mathbb{C}}},{\mathbb{Q}}(1))\to^{\sigma_ X}P^ 2(X_{{\mathbb{C}}},{\mathbb{Q}}(1))\to^{\beta}End(H^ 1(A\quad_{{\mathbb{C}}},{\mathbb{Q}}));\quad conj(\sigma_ A)\circ \alpha =\beta \circ \sigma_ X,\) \(\alpha\) and \(\beta\) being injections of Hodge structures.
From this and the Tate conjecture for abelian varieties it is easy to deduce that the subspace of \(P^ 2(X_{{\mathbb{C}}},{\mathbb{Q}}(1))\) fixed by the Frobenius \(\sigma\) consists of algebraic classes (theorem 3.3). Tate’s conjecture follows as an immediate corollary (3.4), as \(P^ 2_{et}(X_ 0\otimes \bar k,{\mathbb{Q}}_{\ell}(1))^{\sigma}=P^ 2(X_{{\mathbb{C}}},{\mathbb{Q}}(1))^{\sigma}\quad \otimes {\mathbb{Q}}_{\ell}\).
Reviewer: K.Lai

MSC:

14C99 Cycles and subschemes
14G15 Finite ground fields in algebraic geometry
14J25 Special surfaces
14C25 Algebraic cycles
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14C20 Divisors, linear systems, invertible sheaves
14K15 Arithmetic ground fields for abelian varieties

References:

[1] Artin, M.: Supersingular K3 surfaces. Ann. Sc. Ec. Norm. Sup. 4e serie, t.7, 543-568 (1974)
[2] Artin, M., Mazur, B.: Formal groups arising from algebraic varieties. Ann. Sc. Ec. Norm. Sup. 4e serie, t.10, 87-132 (1977) · Zbl 0351.14023
[3] Artin, M., Swinnerton-Dyer, H.B.F.: The Tate-Safarevic conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math.20, 279-296 (1973) · Zbl 0289.14003 · doi:10.1007/BF01394097
[4] Baeza, R.: Quadratic forms over semilocal rings. Springer Lecture Notes in Mathematics, vol. 655. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0382.10014
[5] Berthelot, P.: Cohomologie cristalline des schemas des caractéristiquep>0. Lecture Notes in Mathematics, Vol. 407. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0298.14012
[6] Berthelot, P., Illusie, L.: Classes de Chern en cohomologie cristalline. C.R. Acad. Sc. Paris, t.270, 1695-1697, 1750-1752 (1974) · Zbl 0198.26201
[7] Bloch, S., Gabber, O., Kato, K.:p-adic étale cohomology. Preprint · Zbl 0613.14017
[8] Bourbaki, N.: Éléments des Mathématique. Algebre, Chap. 9. Paris: Hermann 1970
[9] Deligne, P.: La Conjecture de Weil pour les Surfaces K3. Invent. Math.15, 206-226 (1972) · Zbl 0219.14022 · doi:10.1007/BF01404126
[10] Deligne, P.: Relèvement des Surfaces K3 en Caractéristique nulle. In: Surfaces algébriques, Séminaire de Géométrie Algébrique d’Orsay 1976-1978. Lecture Notes in Mathematics, vol. 868. Berlin-Heidelberg-New York: Springer 1981
[11] Deligne, P., Illusie, L.: Cristaux ordinaire et Coordonnees canoniques. In: Surfaces Algébriques, Séminaire de Géométrie algébrique d’Orsay 1976-1978. Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer 1981
[12] Illusie, L.: Complexe de de Rham-Witt et Cohomologie Cristalline. Ann. Sc. Ec. Norm. Sup., 4e série, t.12, 501-661 (1979) · Zbl 0436.14007
[13] Katz, N.: Serre-Tate local moduli of ordinary abelian variétés. In: Surfaces Algébriques, Séminaire de Géométrie algébrique d’Orsay 1976-1978. Lecture Notes in Mathematics, vol. 868. Berlin-Heidelberg-New York: Springer 1981
[14] Kuga, M., Satake, I.: Abelian varieties associated to polarized K3 surfaces. Math. Ann.169, 239-242 (1969) · Zbl 0221.14019 · doi:10.1007/BF01399540
[15] Lubin, J., Tate, J.: Formal moduli for one-parameter formal groups. Bull. Soc. Math. France, T.94 (Fasc. 1) 49-60 (1966) · Zbl 0156.04105
[16] Messing, W.: The crystals associated to Barsotti-Tate groups, with applications to abelian schemes. Lecture Notes in Mathematics, vol. 264. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0243.14013
[17] Nygaard, N.O.:p-adic proof of the non-existence of vectorfields on K3 surfaces. Ann. Math.110, 515-528 (1979) · Zbl 0448.14008 · doi:10.2307/1971236
[18] Ogus, A.: Supersingular K3 crystals. In: Journée de Géométrie Algébrique, Rennes 1978, Asterisque no.64, 3-86 (1979)
[19] Rudakov, A.H., Safarevic, I.R.: Inseparable morphisms of algebraic surfaces. Akad. Sc. SSSR, Tom.40 (no. 6) 1264-1309 (1976)
[20] Serre, J-P.: Groupsp-divisible (d’apres J. Tate), Séminaire Bourbaki 318, Novembre 1968
[21] Serre, J-P.: Sur la topologie des variétés algébrique en caractéristiquep. Symp. Int. de Top. Alg. Mexico (1958)
[22] Tate, J.: Algebraic cycles and poles of Zeta functions. Conference on Arithmetic Algebraic Geometry, Purdue University, Harper and Row, New York (1966) · Zbl 0199.55604
[23] Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math.2, 134-144 (1966) · Zbl 0147.20303 · doi:10.1007/BF01404549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.