×

The Schinzel hypothesis for polynomials. (English) Zbl 1469.12003

The conjecture of Schinzel asserts that if \(P_1,P_2,\dots,P_k\in Z[x]\) are irreducible and their product does not have a fixed divisor \(>1\), then for infinitely \(n\) the values \(P_1(n),P_2(n),\dots,P_k(n)\) are prime [A. Schinzel and W. Sierpiński, Acta Arith. 4, 185–208 (1958; Zbl 0082.25802)]. The authors establish the truth of its analogue in the case when the ring \(Z\) of rational integers is replaced by the ring \(R_m=R[x_1,x_2,\dots,x_m]\), where \(m\ge1\) and \(R\) is a unique factorization domain with fraction field \(K\) in which the product formula holds and in case char\((K)=p>0\) one has \(K^p\ne K\) (Theorem 1.1). In Theorem 5.5 this result is extended to the case when the polynomials \(P_i\) are multivariate.
As a corollary one obtains the analogue of the Goldbach problem: if \(R\) satisfies the conditions of Theorem 1.1, then every non-constant polynomial in \(R_m\) is a sum of two irreducible polynomials, of which one is a binomial (Corollary 1.5). Earlier D. R. Hayes [Am. Math. Mon. 72, 45–46 (1965; Zbl 0128.04701)] did this in the case \(m=1, R=Z[x]\), pointing out that his proof works for principal ideal domains with infinitely many maximal ideals, and P. Pollack [Am. Math. Mon. 118, No. 1, 71–77 (2011; Zbl 1206.13010)] extended this (still for \(m=1\)) to the case when \(R\) is either a Noetherian domain having infinitely many maximal ideals or the ring of polynomials over an arbitrary integral domain.

MSC:

12E05 Polynomials in general fields (irreducibility, etc.)
11C08 Polynomials in number theory
12E25 Hilbertian fields; Hilbert’s irreducibility theorem
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

References:

[1] Bodin, Arnaud; D\`ebes, Pierre; Najib, Salah, Irreducibility of hypersurfaces, Comm. Algebra, 37, 6, 1884-1900 (2009) · Zbl 1175.12001 · doi:10.1080/00927870802116562
[2] Bodin, Arnaud; D\`ebes, Pierre; Najib, Salah, Families of polynomials and their specializations, J. Number Theory, 170, 390-408 (2017) · Zbl 1380.12002 · doi:10.1016/j.jnt.2016.06.023
[3] Bodin, Arnaud, Reducibility of rational functions in several variables, Israel J. Math., 164, 333-347 (2008) · Zbl 1165.12001 · doi:10.1007/s11856-008-0033-2
[4] Bary-Soroker, Lior, Dirichlet’s theorem for polynomial rings, Proc. Amer. Math. Soc., 137, 1, 73-83 (2009) · Zbl 1259.12002 · doi:10.1090/S0002-9939-08-09474-4
[5] Bary-Soroker, Lior, Irreducible values of polynomials, Adv. Math., 229, 2, 854-874 (2012) · Zbl 1271.11114 · doi:10.1016/j.aim.2011.10.006
[6] Bender, Andreas O.; Wittenberg, Olivier, A potential analogue of Schinzel’s hypothesis for polynomials with coefficients in \({\mathbb{F}}_q[t]\), Int. Math. Res. Not., 36, 2237-2248 (2005) · Zbl 1087.11072 · doi:10.1155/IMRN.2005.2237
[7] Colliot-Th\'{e}l\`ene, Jean-Louis; Sansuc, Jean-Jacques, Sur le principe de Hasse et l’approximation faible, et sur une hypoth\`ese de Schinzel, Acta Arith., 41, 1, 33-53 (1982) · Zbl 0414.10009 · doi:10.4064/aa-41-1-33-53
[8] D\`ebes, Pierre, Density results for Hilbert subsets, Indian J. Pure Appl. Math., 30, 1, 109-127 (1999) · Zbl 0923.12001
[9] Michael D. Fried and Moshe Jarden, Field arithmetic, next edition. · Zbl 1055.12003
[10] Fried, Michael D.; Jarden, Moshe, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 11, xxiv+792 pp. (2008), Springer-Verlag, Berlin · Zbl 1145.12001
[11] Harpaz, Yonatan; Wittenberg, Olivier, On the fibration method for zero-cycles and rational points, Ann. of Math. (2), 183, 1, 229-295 (2016) · Zbl 1342.14052 · doi:10.4007/annals.2016.183.1.5
[12] Kornblum, Heinrich; Landau, E., \"{U}ber die Primfunktionen in einer arithmetischen Progression, Math. Z., 5, 1-2, 100-111 (1919) · JFM 47.0154.02 · doi:10.1007/BF01203156
[13] Lang, Serge, Fundamentals of Diophantine geometry, xviii+370 pp. (1983), Springer-Verlag, New York · Zbl 0528.14013 · doi:10.1007/978-1-4757-1810-2
[14] Lang, Serge, Algebra, Graduate Texts in Mathematics 211, xvi+914 pp. (2002), Springer-Verlag, New York · Zbl 0984.00001 · doi:10.1007/978-1-4613-0041-0
[15] Najib, Salah, Sur le spectre d’un polyn\^ome \`a plusieurs variables, Acta Arith., 114, 2, 169-181 (2004) · Zbl 1071.12001 · doi:10.4064/aa114-2-6
[16] Najib, Salah, Une g\'{e}n\'{e}ralisation de l’in\'{e}galit\'{e} de Stein-Lorenzini, J. Algebra, 292, 2, 566-573 (2005) · Zbl 1119.13022 · doi:10.1016/j.jalgebra.2004.11.024
[17] Pollack, Paul, On polynomial rings with a Goldbach property, Amer. Math. Monthly, 118, 1, 71-77 (2011) · Zbl 1206.13010 · doi:10.4169/amer.math.monthly.118.01.071
[18] Rosen, Michael, Number theory in function fields, Graduate Texts in Mathematics 210, xii+358 pp. (2002), Springer-Verlag, New York · Zbl 1043.11079 · doi:10.1007/978-1-4757-6046-0
[19] Schinzel, Andrzej, Selected topics on polynomials, xxi+250 pp. (1982), University of Michigan Press, Ann Arbor, Mich. · Zbl 0487.12002
[20] Schinzel, A., Polynomials with special regard to reducibility, Encyclopedia of Mathematics and its Applications 77, x+558 pp. (2000), Cambridge University Press, Cambridge · Zbl 0956.12001 · doi:10.1017/CBO9780511542916
[21] Schinzel, A.; Sierpi\'{n}ski, W., Sur certaines hypoth\`eses concernant les nombres premiers, Acta Arith., 4, 185-208; erratum 5 (1958), 259 (1958) · Zbl 0082.25802 · doi:10.4064/aa-4-3-185-208
[22] Swan, Richard G., Factorization of polynomials over finite fields, Pacific J. Math., 12, 1099-1106 (1962) · Zbl 0113.01701
[23] Uchida, K\^oji, Separably Hilbertian fields, Kodai Math. J., 3, 1, 83-95 (1980) · Zbl 0435.12010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.