×

A sharp Clifford wavelet Heisenberg-type uncertainty principle. (English) Zbl 1454.81119

Summary: In the present work, we are concerned with the development of a new uncertainty principle based on the wavelet transform in the Clifford analysis/algebra framework. We precisely derive a sharp Heisenberg-type uncertainty principle for the continuous Clifford wavelet transform.
©2020 American Institute of Physics

MSC:

81S07 Uncertainty relations, also entropic
15A67 Applications of Clifford algebras to physics, etc.
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Amri, B.; Rachdi, L. T., Beckner logarithmic uncertainty principle for the Riemann-Liouville operator, Int. J. Math., 24, 9, 1350070 (2013) · Zbl 1282.42007 · doi:10.1142/s0129167x13500705
[2] Amri, B.; Rachdi, L. T., Uncertainty principle in terms of entropy for the Riemann-Liouville operator, Bull. Malaysian Math. Sci. Soc., 39, 1, 457-481 (2015) · Zbl 1333.42009 · doi:10.1007/s40840-015-0121-5
[3] Arfaoui, S.; Rezgui, I.; Ben Mabrouk, A., Wavelet Analysis on the Sphere: Spheroidal Wavelets (2017), Walter de Gruyter · Zbl 1369.42026
[4] Arfaoui, S.; Ben Mabrouk, A., Some ultraspheroidal monogenic Clifford Gegenbauer Jacobi polynomials and associated wavelets, Adv. Appl. Clifford Algebras, 27, 2287-2306 (2017) · Zbl 1409.42024 · doi:10.1007/s00006-017-0788-9
[5] Arfaoui, S.; Ben Mabrouk, A., Some old orthogonal polynomials revisited and associated wavelets: Two-parameters Clifford-Jacobi polynomials and associated spheroidal wavelets, Acta Appl. Math., 155, 177-195 (2018) · Zbl 1407.42028 · doi:10.1007/s10440-017-0150-1
[6] Arfaoui, S.; Ben Mabrouk, A.; Cattani, C., New type of Gegenbauer-Hermite monogenic polynomials and associated Clifford wavelets, J. Math. Imaging Vis., 62, 73-97 (2020) · Zbl 1455.94005 · doi:10.1007/s10851-019-00914-y
[7] Arfaoui, S.; Ben Mabrouk, A.; Cattani, C., New type of Gegenbauer-Jacobi-Hermite monogenic polynomials and associated continuous Clifford wavelet transform, Acta Appl. Math. (2020) · Zbl 1455.94005 · doi:10.1007/s10440-020-00322-0
[8] Banouh, H.; Ben Mabrouk, A.; Kesri, M., Clifford wavelet transform and the uncertainty principle, Adv. Appl. Clifford Algebras, 29, 106 (2019) · Zbl 1430.30024 · doi:10.1007/s00006-019-1026-4
[9] Brackx, F.; Chisholm, J. S. R.; Soucek, V., Clifford Analysis and Its Applications (2000), Springer
[10] Brackx, F.; Delanghe, R.; Sommen, F., Clifford Analysis (1982), Pitman Publication · Zbl 0529.30001
[11] Brackx, F.; De Schepper, N.; Sommen, F., The two-dimensional Clifford-Fourier transform, J. Math. Imaging, 26, 5-18 (2006) · Zbl 1122.42016 · doi:10.1007/s10851-006-3605-y
[12] Brackx, F.; De Schepper, N.; Sommen, F., The Fourier transform in Clifford analysis, Adv. Imaging Electron Phys., 156, 55-201 (2009) · doi:10.1016/s1076-5670(08)01402-x
[13] Brackx, F.; De Schepper, N.; Sommen, F.; Gürlebeck, K.; Könke, C., Clifford-Hermite and two-dimensional Clifford-Gabor filters for early vision, (digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering (2006), Bauhaus-Universität Weimar
[14] Brackx, F.; Hitzer, E.; Sangwine, S. J., History of quaternion and Clifford-Fourier transforms and wavelets, Quaternion and Clifford-Fourier Transforms and Wavelets, XI-XXVII (2013), Springer, Basel · Zbl 1273.42007
[15] Brackx, F.; Sommen, F., The continuous wavelet transform in Clifford analysis, Clifford Analysis and Its Applications, 9-26 (2001), Springer Netherlands · Zbl 1003.44004
[16] Bujack, R.; De Bie, H.; De Schepper, N.; Scheuermann, G., Convolution products for hypercomplex Fourier transforms, J. Math. Imaging Vis., 48, 3, 606-624 (2013) · Zbl 1292.42007 · doi:10.1007/s10851-013-0430-y
[17] Bujack, R.; Scheuermann, G.; Hitzer, E.; Hitzer, E.; Sangwine, S. J., A general geometric Fourier transform, Quaternion and Clifford Fourier Transforms and Wavelets, 155-176 (2013), Birkhauser: Birkhauser, Basel · Zbl 1273.15020
[18] Bujack, R.; Scheuermann, G.; Hitzer, E., A general geometric Fourier transform convolution theorem, Adv. Appl. Clifford Alg., 23, 1, 15-38 (2013) · Zbl 1263.15021 · doi:10.1007/s00006-012-0338-4
[19] Clifford, W. K., On the classification of geometric algebras, Mathematical Papers, 397-401 (1882), MacMillan, London
[20] Dahkle, S.; Kutyniok, G.; Maass, P.; Sagiv, C.; Stark, H.-G.; Teschke, G., The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets, Multiresol. Inform. Process., 6, 2, 157-181 (2008) · Zbl 1257.42047 · doi:10.1142/S021969130800229X
[21] Delanghe, R., Clifford analysis: History and perspective, Comput. Methods Funct. Theory, 1, 1, 107-153 (2001) · Zbl 1011.30045 · doi:10.1007/bf03320981
[22] De Bie, H., Clifford algebras, Fourier transforms and quantum mechanics, Math. Method. Appl. Sci., 35, 18, 2198-2228 (2012) · Zbl 1259.42001 · doi:10.1002/mma.2679
[23] De Bie, H.; Xu, Y., On the Clifford-Fourier transform, Int. Math. Res., 22, 5123-5163 (2011) · Zbl 1237.30018 · doi:10.1093/imrn/rnq288
[24] De Schepper, N., Multi-dimensional continuous wavelet transforms and generalized Fourier transforms in Clifford analysis (2006), Ghent University
[25] Dian Tunjung, N.; Zainal Arifin, A.; Soelaiman, R., Medical image segmentation using generalized Gradient vector flow and Clifford geometric algebra, 5 (2008)
[26] Dirac, P. A. M., The quantum theory of the electron, Proc. R. Soc. London, Ser. A, 117, 778, 610-624 (1928) · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[27] El Haoui, Y.; Fahlaoui, S., The continuous quaternion algebra-valued wavelet transform and the associated uncertainty principle (2019) · Zbl 1449.42007
[28] El Haoui, Y.; Fahlaoui, S.; Hitzer, E., Generalized uncertainty principles associated with the quaternionic offset linear canonical transform (2019)
[29] El Haoui, Y.; Fahlaoui, S., Donoho-Stark’s uncertainty principles in real Clifford algebras, Adv. Appl. Clifford Al., 29, 94 (2019) · Zbl 1428.43004 · doi:10.1007/s00006-019-1015-7
[30] Feichtinger, H. G.; Gröchenig, K., Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, Wavelets, 2, 359-398 (1992) · Zbl 0849.43003 · doi:10.1016/b978-0-12-174590-5.50018-6
[31] Grossmann, A.; Morlet, J.; Paul, T., Transforms associated to square integrable group representations. II: Examples, Ann. l’IHP Phys. Théor., 45, 3, 293-309 (1986) · Zbl 0601.22001
[32] Grossmann, A.; Morlet, J., Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., 15, 723-736 (1984) · Zbl 0578.42007 · doi:10.1137/0515056
[33] Hamilton, W. R., On a new species of imaginary quantities connected with a theory of quaternions, Proc. R. Irish Acad., 2, 424-434 (1844)
[34] Hamilton, W. R., Elements of Quaternions (1866), Longmans, Green, & Company
[35] Heisenberg, W., Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Z. Phys., 43, 172-198 (1927) · JFM 53.0853.05 · doi:10.1007/bf01397280
[36] Heisenberg, W., Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Original Scientific Papers Wissenschaftliche Originalarbeiten, 478-504 (1985), Springer Berlin Heidelberg · Zbl 0685.01012
[37] Hitzer, E.; Mastorakis, N. E.; Pardalos, P. M.; Agarwal, R. P.; Kocinac, L., New developments in Clifford Fourier transforms, Advances in Applied and Pure Mathematics, 19-25 (2014), Dekker
[38] Hitzer, E.; Skala, V.; Hildenbrand, D., Clifford (geometric) algebra wavelet transform, 94-101 (2009), Vaclav Skala-Union Agency
[39] Hitzer, E., Directional uncertainty principle for quaternion Fourier transform, Adv. Appl. Clifford Alg., 20, 271-284 (2010) · Zbl 1198.42006 · doi:10.1007/s00006-009-0175-2
[40] Hitzer, E.; Mawardi, B.; Simos, T. E.; Sihoyios, G.; Tsitouras, C., Uncertainty principle for the Clifford-geometric algebra \(\mathcal{C} \updownarrow_{3, 0}\) based on Clifford Fourier transform, International Conference on Numerical Analysis and Applied Mathematics 2005, 922-925 (2005), Wiley-VCH, Weinheim · Zbl 1087.15528
[41] Hitzer, E.; Tachibana, K., Tutorial on Fourier transformations and wavelet transformations in Clifford geometric algebra, 65-87 (2007), Nagoya University: Nagoya University, Japan
[42] Jorgensen, P.; Tian, F., Non-Commutative Analysis (2017), World Scientific Publishing Company · Zbl 1371.46003
[43] Kou, K. I.; Ou, J.-Y.; Morais, J., On uncertainty principle for quaternionic linear canonical transform, Abst. Appl. Anal., 2013, 725952 · Zbl 1275.42012 · doi:10.1155/2013/725952
[44] Ma, G.; Zhao, J., Quaternion ridgelet transform and curvelet transform, Adv. Appl. Clifford Algebras, 28, 80 (2018) · Zbl 1408.42030 · doi:10.1007/s00006-018-0897-0
[45] Mawardi, B., Construction of quaternion-valued wavelets, Matematika, 26, 1, 107-114 (2010)
[46] Mawardi, B.; Ryuichi, A., A simplified proof of uncertainty principle for quaternion linear canonical transform, Abst. Appl. Anal., 2016, 5874930 · Zbl 1470.42013 · doi:10.1155/2016/5874930
[47] Mawardi, B.; Ashino, R., Logarithmic uncertainty principle for quaternion linear canonical transform, Proceedings of the 2016 International Conference on Wavelet Analysis and Pattern Recognition, Jeju, South Korea, 6 (2016), IEEE · doi:10.1109/icwapr.2016.7731634
[48] Mawardi, B.; Ashino, R., A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transforms, Abst. Appl. Anal., 2017, 3795120 · Zbl 1470.42062 · doi:10.1155/2017/3795120
[49] Mawardi, B.; Hitzer, E., Clifford algebra Cl(3, 0)-valued wavelets and uncertainty inequality for Clifford Gabor wavelet transformation, 64-65 (2006), Tsukuba University: Tsukuba University, Tsukuba, Japan
[50] Mawardi, B.; Hitzer, E., Clifford algebra Cl(3, 0)-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets, Int. J. Wavelets, Multiresol. Inform. Process., 5, 6, 997-1019 (2007) · Zbl 1197.42019 · doi:10.1142/s0219691307002166
[51] Mawardi, B.; Hitzer, E., Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl_3,0, Adv. Appl. Clifford Alg., 16, 41-61 (2006) · Zbl 1133.42305 · doi:10.1007/s00006-006-0003-x
[52] Mawardi, B.; Hitzer, E., Clifford Fourier transform on multivector Fields and uncertainty principles for dimensions n = 2(mod 4) and n = 3(mod 4), Adv. Appl. Clifford Alg., 18, 715-736 (2008) · Zbl 1177.15029 · doi:10.1007/s00006-008-0098-3
[53] Mawardi, B.; Hitzer, E.; Hayashi, A.; Ashino, R., An uncertainty principle for quaternion Fourier transform, Comput. Math. Appl., 56, 2398-2410 (2008) · Zbl 1165.42310 · doi:10.1016/j.camwa.2008.05.032
[54] Mawardi, B.; Ashino, R.; Vaillancourt, R., Two-dimensional quaternion wavelet transform, Appl. Math. Comput., 218, 10-21 (2011) · Zbl 1232.65192 · doi:10.1016/j.amc.2011.05.030
[55] Nagata, K.; Nakamura, T., Violation of Heisenberg’s uncertainty principle, Open Access Library J., 2, e1797 (2015) · doi:10.4236/oalib.1101797
[56] Rachdi, L. T.; Meherzi, F., Continuous wavelet transform and uncertainty principle related to the spherical mean operator, Mediterr. J. Math., 14, 1, 11 (2016) · Zbl 1367.43003 · doi:10.1007/s00009-016-0834-1
[57] Rachdi, L. T.; Amri, B.; Hammami, A., Uncertainty principles and time frequency analysis related to the Riemann-Liouville operator, Ann. Univ. Ferrara, 65, 139 (2018) · Zbl 1430.42005 · doi:10.1007/s11565-018-0311-9
[58] Rachdi, L. T.; Herch, H., Uncertainty principles for continuous wavelet transforms related to the Riemann-Liouville operator, Ric. Mat., 66, 2, 553-578 (2017) · Zbl 1381.43008 · doi:10.1007/s11587-017-0320-5
[59] Rizo-Rodríguez, D.; Méndez-Vázquez, H.; García-Reyes, E., Illumination invariant face recognition using quaternion-based correlation Filters, J. Math. Imaging Vis., 45, 164-175 (2013) · Zbl 1276.68138 · doi:10.1007/s10851-012-0352-0
[60] Sau, K.; Basak, R. K.; Chanda, A., Image compression based on block truncation coding using Clifford algebra, Proc. Technol., 10, 699-706 (2013) · doi:10.1016/j.protcy.2013.12.412
[61] Sen, D., The uncertainty relations in quantum mechanics, Current Science, 107, 2, 203-218 (2018) · doi:10.13140/2.1.5183.0406
[62] Sommen, F.; De Schepper, H., Introductory Clifford Analysis, 1-27 (2015), Springer: Springer, Basel · Zbl 1330.30008 · doi:10.1007/978-3-0348-0667-1_29
[63] Soulard, R.; Carré, P., Characterization of color images with multiscale monogenic maxima, IEEE Trans. Pattern Anal. Mach. Intell., 40, 10, 2289-2302 (2018) · doi:10.1109/tpami.2017.2760303
[64] Stabnikov, P. A., Geometric interpretation of the uncertainty principle, Nat. Sci., 11, 5, 146-148 (2019) · doi:10.4236/ns.2019.115017
[65] Wietzke, L.; Sommer, G., The signal multi-vector, J. Math. Imaging Vis., 37, 132-150 (2010) · Zbl 1490.94031 · doi:10.1007/s10851-010-0197-3
[66] Weyl, H., The Theory of Groups and Quantum Mechanics (1950), Dover: Dover, New York · Zbl 0041.25401
[67] Yang, Y.; Dang, P.; Qian, T., Stronger uncertainty principles for hypercomplex signals, Complex Var. Elliptic Equations, 60, 12, 1696-1711 (2015) · Zbl 1342.42006 · doi:10.1080/17476933.2015.1041938
[68] Yang, Y.; Ian Kou, K., Uncertainty principles for hypercomplex signals in the linear canonical transformdomains, Signal Process., 95, 67-75 (2014) · doi:10.1016/j.sigpro.2013.08.008
[69] Zou, C.; Kou, K. I., Hypercomplex signal energy concentration in the spatial and quaternionic linear canonical Frequency domains (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.