×

Uncertainty principles and time frequency analysis related to the Riemann-Liouville operator. (English) Zbl 1430.42005

The Riemann–Liouville transform is defined on \((0,\infty)\times\mathbb{R}\) by \(D= \frac{\partial}{\partial x}\) and \(\Xi =\frac{\partial^2}{\partial r^2}+\frac{2\alpha+1}{r}\frac{\partial}{\partial r}+D^2\). One associates translation operators \(\tau_{(\xi_1,\xi_2)}\) defined by \[\tau_{(r,x)}f(s,y)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+1/2)} \int_0^\pi f(\sqrt{r^2+s^2+2rs\cos\theta},x+y)\, \sin^{2\alpha}(\theta)\, d\theta\, . \] Observing that eigenfunctions \(\varphi_{\lambda_0,\lambda}\) of the system \(Du=-i\lambda u\); \(\Xi u=-\lambda_0^2 u\) with initial values \(u(0,0)=1\) and \(\frac{\partial u}{\partial x}(0,x)=0\) have the form \(\varphi_{\lambda_0,\lambda}=j_\alpha(f\sqrt{\lambda+\lambda_0^2}) \, e^{i\lambda x}\) for the modified Bessel function \(j_\alpha\), one has \(\tau_{(r,x)}\varphi_{\lambda_0,\lambda}(s,y)=\varphi_{\lambda_0,\lambda}(r,x)\varphi_{\lambda_0,\lambda}(s,y)\). Convolution is defined as \((f\ast g)(r,x)=\int_0^\infty\int_{-\infty}^\infty \tau_{(r,-x)}(f^\vee)(s,y) g(s,y) \, d\nu_\alpha (s,y)\) (\(f^\vee(s,y)=f(s,-y)\)), with respect to the measure \(d\nu_\alpha(r,x)=\frac{r^{2\alpha+1}}{2^\alpha\Gamma(\alpha+1)}\otimes\frac{dx}{\sqrt{2\pi}}\) on \((0,\infty)\times \mathbb{R}\). This convolution is shown to satisfy the standard Young’s inequality.
The Fourier transform \(\mathcal{F}_\alpha(f)(\lambda_0,\lambda)\) is defined by integration against \(\varphi_{\lambda_0,\lambda}\) with respect to \(d\nu_\alpha\) with a corresponding inverse \(\widetilde{\mathcal{F}}_\alpha\). A Fourier inversion formula is proved for \(L^1(d\nu_\alpha)\) along with a Plancherel formula and a Fourier convolution-product formula.
A modulation can be defined by \(M_{(\xi_1,\xi_2)}f=\widetilde{\mathcal{F}}_\alpha\Bigl(\sqrt{\tau_{(\xi_1,\xi_2)}(|\widetilde{\mathcal{F}}_\alpha(f)|^2)}\Bigr)\). Then an analogue of the short-time Fourier transform can be defined as \(V_g(f)(r,x)=f\ast M_{(\xi_1,\xi_2)}(g)(r,-x)\).
Window functions are defined and it is shown that the following Plancherel-type formula extends to this windowed Fourier transform: \[\|\mathcal{V}_g(f)\|_{2,\nu_\alpha\otimes\nu_\alpha}=\|f\|_{2,\nu_\alpha}\|g\|_{2,\nu_\alpha}\, . \] An inversion formula for \(\mathcal{V}_g(f)\) is proved that is analogous to the known formula for the standard windowed Fourier transform on \(L^2(\mathbb{R}^n)\), and the following analogue of the Heisenberg inequality is established: \[\||(r,x)|\mathcal{V}_g(f)\|_{2,\nu_\alpha\otimes\nu_\alpha} \||(\xi_1,\xi_2)|\mathcal{V}_g(f)\|_{2,\nu_\alpha\otimes\nu_\alpha} \geq\frac{2\alpha+3}{2} \|f\|_{2,\nu_\alpha}^2\|g\|_{2,\nu_\alpha}^2\, . \] Other variations are investigated on sets of finite measure.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B37 Harmonic analysis and PDEs
42A85 Convolution, factorization for one variable harmonic analysis
44A35 Convolution as an integral transform
Full Text: DOI

References:

[1] Amri, B., Rachdi, L.T.: The Littlewood-Paley \[g\] g-function associated with the Riemann-Liouville operator. Ann. Univ. Paedagog. Crac. Stud. Math. 12, 31-58 (2013) · Zbl 1302.43003
[2] Amri, B., Rachdi, L.T.: Uncertainty principle in terms of entropy for the Riemann-Liouville operator. Bull. Malays. Math. Sci. Soc. (2016). https://doi.org/10.1007/s40840-015-0121-5 · Zbl 1333.42009
[3] Amri, B., Rachdi, L.T.: Beckner logarithmic uncertainty principle for the Riemann-Liouville operator. Int. J. Math. 24(9), 1350070 (2013). (29 pages) · Zbl 1282.42007 · doi:10.1142/S0129167X13500705
[4] Amri, B., Rachdi, L.T.: Calderon-reproducing formula for singular partial differential operators. Integral Transforms Spec. Funct. 25(8), 597-611 (2014) · Zbl 1292.42014 · doi:10.1080/10652469.2014.888807
[5] Baccar, C., Hamadi, N.B., Rachdi, L.T.: Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. 2006, 1-26 (2006) · Zbl 1131.44002 · doi:10.1155/IJMMS/2006/86238
[6] Baccar, C., Hamadi, N.B., Rachdi, L.T.: Best approximation for Weierstrass transform connected with Riemann-Liouville operator. Commun. Math. Anal. 5(1), 65-83 (2008) · Zbl 1163.44002
[7] Baccar, C., Rachdi, L.T.: Spaces of \[D_{L^p}\] DLp-type and a convolution product associated with the Riemann-Liouville operator. Bull. Math. Anal. Appl. 1(3), 16-41 (2009) · Zbl 1312.42028
[8] Boggiatto, P., Carypis, E., Oliaro, A.: Local uncertainty principles for the Cohen class. J. Math. Anal. Appl. 419(2), 1004-1022 (2014) · Zbl 1336.42007 · doi:10.1016/j.jmaa.2014.05.002
[9] Cohen, L.: The uncertainty principle for the short-time Fourier transform. Pro. Int. Soc. Opt. Eng. 22563, 80-90 (1995)
[10] Erdélyi, A., et al.: Tables of Integral Transforms, vol. 2. Mc Graw-Hill Book Company, New York (1954) · Zbl 0055.36401
[11] Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York (1956) · Zbl 0070.29002
[12] Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207-238 (1989) · Zbl 0885.42006 · doi:10.1007/BF02649110
[13] Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93(26), 429-457 (1946)
[14] Gröchenig, K.H.: Foundations of Time-Frequency Analysis. Birkhauser, Boston (2001) · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[15] Gröchenig, K.; Feichtinger, HG (ed.); Strohmer, T. (ed.), Uncertainty principles for time-frequency representations, 11-30 (2003), Boston · Zbl 1039.42004 · doi:10.1007/978-1-4612-0133-5_2
[16] Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994) · Zbl 0827.42001 · doi:10.1007/978-3-642-78377-7
[17] Hogan, J.A., Lakey, J.D.: Time-frequency and time-scale methods: Adaptive decompositions, uncertainty principles, and sampling. Applied and numerical harmonic analysis. Birkhäuser Boston. Basel, Berlin (2007) · Zbl 1079.42027
[18] Lebedev, N.N.: Special Functions and Their Applications. Dover Publications, New York (1972) · Zbl 0271.33001
[19] Omri, S., Rachdi, L.T.: An \[L^p-L^q\] Lp-Lq version of Morgan’s theorem associated with Riemann-Liouville transform. Int. J. Math. Anal. 1(17), 805-824 (2007) · Zbl 1213.42022
[20] Omri, S., Rachdi, L.T.: Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator. J. Inequal. Pure Appl. Math. 9(3), Art 88 (2008) · Zbl 1159.42305
[21] Price, J.F.: Inequalities and local uncertainty principles. J. Math. phys. 24(7), 1711-1714 (1983) · Zbl 0513.60100 · doi:10.1063/1.525916
[22] Price, J.F.: Sharp local uncertainty inequalities. Stud. Math. 85, 37-45 (1987) · Zbl 0636.46029 · doi:10.4064/sm-85-1-37-45
[23] Rachdi, L.T., Rouz, A.: On the range of the Fourier transform connected with Riemann-Liouville operator. Ann. Math. Blaise Pascal 16(2), 355-397 (2009) · Zbl 1179.42019 · doi:10.5802/ambp.272
[24] Saitoh, S.: Theory of Reproducing Kernels and Its Applications. Longman Scientific Technical, Harlow (1988) · Zbl 0652.30003
[25] Trimèche, K.: Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur \[(0,+\infty )(0,+∞)\]. J. Math. Pures Appl. 60, 51-98 (1981) · Zbl 0416.44002
[26] Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.