×

Clifford analysis: History and perspective. (English) Zbl 1011.30045

This is a very readable exposition of Clifford analysis, a flourishing theory which has been developped for a great part by the author and his coworkers. The first part deals with Clifford algebras, their groups, and Möbius transformations.The second part gives the fundamentals of Clifford analysis, the Dirac and Weyl operators, monogenic functions, their integral formulas and the series expansions. Part 3 is dealing with the connections to harmonic analysis, especially Hardy spaces. This overview can be warmly recommended to all who want to have an overview of Clifford analysis or who wish to get a first acquaintance with the theory.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
Full Text: DOI

References:

[1] L. V. Ahlfors, Clifford numbers and Möbius transformations in \(\mathbb{R}\)n, in: J. S. R. Chisholm and A. K. Common (eds.), Clifford Algebras and their Applications in Mathematical Physics, NATO ASI, Ser. C, Vol. 183, D. Reidel, Dordrecht, 1986, 167–175.
[2] S. Bernstein, Integralgleichungen und Funktionenräume für Randwerte monogener Funktionen, Habilitationsschrift, TU Bergakademie Freiberg, 2001. · Zbl 1142.30338
[3] F. Brackx and F. Sommen, Clifford-Hermite wavelets in Euclidean space, J. Fourier Analysis and Applications 6 (2000), 299–310. · Zbl 0961.42021 · doi:10.1007/BF02511157
[4] F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76, Pitman, London, 1982.
[5] F. Brackx, J. S. R. Chisholm, and J. Bureš (Eds.), Clifford Analysis and its Applications, NATO Science Series, Kluwer, Dordrecht, 2001.
[6] J. Bureš, Integral formulae in complex Clifford analysis in Clifford Algebras and their Applications in Mathematical Physics, in: J. S. R. Chisholm and A. K. Common (eds.), Clifford Algebras and their Applications in Mathematical Physics, NATO ASI, Ser C, Vol. 183, Reidel, Dordrecht, 1986, 219–226.
[7] J. Bureš and V. Souček, Generalized hypercomplex analysis and its integral formulas, Complex Variables 5 (1985), 53–70. · Zbl 0586.30043 · doi:10.1080/17476938508814126
[8] J. Bureš, F. Sommen, V. Souček, and P. Van Lancker, Symmetric analogues of Rarita-Swinger equations, submitted for publication.
[9] J. Bureš, F. Sommen, V. Souček, and P. Van Lancker, Rarita-Schwinger type operators in Clifford analysis, J. Funct. Anal. 185 (2001), 425–455. · Zbl 1078.30041 · doi:10.1006/jfan.2001.3781
[10] W. K. Clifford, Applications of Grassmann’s extensive algebra, Amer. J. Math. 1 (1978), 350–358. · JFM 10.0297.02 · doi:10.2307/2369379
[11] J. Cnops, Hurwitz Pairs and Applications of Möbius Transformations, Habilitation Thesis, Ghent University, 1994.
[12] R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Annals of Mathematics 116 (1982), 361–387. · Zbl 0497.42012 · doi:10.2307/2007065
[13] C. A. Deavours, The quaternion calculus, Amer. Math. Monthly 80 (1973), 995–1008. · Zbl 0282.30040 · doi:10.2307/2318774
[14] R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions, Kluwer, Dordrecht, 1992. · Zbl 0747.53001
[15] P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. A 117 (1928), 610–624. · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[16] J. Fillmore and A. Springer, Möbius groups over general fields using Clifford algebras associated with spheres, Int. J. Theo. Phys. 29 (1990), 225–246. · Zbl 0702.51003 · doi:10.1007/BF00673627
[17] R. Fueter, Die Funktionentheorie der Differentialgleichungen {\(\Delta\)}u = 0 und {\(\Delta\)}{\(\Delta\)} u = 0 mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330. · Zbl 0012.01704 · doi:10.1007/BF01292723
[18] R. Fueter, Über die Funktionentheorie in einer hyperkomplexen Algebra, Elemente der Mathematik, Band III/5, 1948, 89–94. · Zbl 0031.02601
[19] J. Gilbert and M. A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Univ. Press, 1991. · Zbl 0733.43001
[20] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers, John Wiley, New York, 1997. · Zbl 0897.30023
[21] D. Hestenes, Multivector functions, J. Math. An. Appl. 24 (1968), 467–473. · Zbl 0189.33503 · doi:10.1016/0022-247X(68)90002-4
[22] V. Iftimie, Fonctions hypercomplexes, Bull. Math. Soc. Sc. R. S. R. 4 (1965), 279–332. · Zbl 0177.36903
[23] F. John, Plane Waves and Spherical Means, Springer Verlag, New York, 1955. · Zbl 0067.32101
[24] K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter’s theorem, submitted for publication. · Zbl 1079.30066
[25] S. Krau{\(\beta\)}har, Eisenstein Series in Clifford Analysis, Ph. D. Thesis, TU Aachen, 2000. · Zbl 0981.30033
[26] S. Krau{\(\beta\)}har, Automorphic forms in Clifford analysis, submitted for publication.
[27] G. Laville and I. Ramadanoff, Elliptic Cliffordian functions, submitted for publication. · Zbl 1022.30050
[28] P. Lounesto, Clifford Algebras and Spinors, Cambridge Univ. Press, 1997. · Zbl 0887.15029
[29] A. McIntosh, Clifford algebras, Fourier theory, singular integrals and harmonic functions on Lipschitz domains, in: J. Ryan (ed.), Clifford Algebras in Analysis and Related Topics, CRC Press, 1996, 33–88. · Zbl 0886.42011
[30] M. Mitrea and F. Sabac, Pompeiu’s integral representation formula, History and Mathematics, preprint, 1993.
[31] M. Mitrea, Clifford Wavelets, Singular Integrals and Hardy Spaces, Springer-Verlag, Berlin, 1994.
[32] Gr. Moisil and N. Théodoresco, Functions holomorphes dans l’espace, Mathematica, Cluj 5 (1931), 142–159.
[33] D. Pompeiu, Sur une classe de functiols d’une variable complexe, Rend. Circ. Mat. Palermo 33 (1912), 108–113. · JFM 43.0481.01 · doi:10.1007/BF03015292
[34] I. R. Porteous, Clifford Algebras and the Classical Groups, Cambridge Univ. Press, 1995. · Zbl 0855.15019
[35] T. Qian, Generalization of Fueter’s result to \(\mathbb{R}\) n+1, Rend. Mat. Acc. Lincei 8 (1997), 111–117. · Zbl 0909.30036 · doi:10.1007/BF03002325
[36] T. Qian, Fourier analysis on star-shaped Lipschitz surfaces, to appear in J. Funct. Analysis.
[37] M. Riesz, Clifford Numbers and Spinors, The Institute for Fluid Dynamics and Applied Mathematics, Lecture Series No. 38, Univ. Maryland, 1958; reprinted as facsimile: E. F. Bolinder and P. Lounesto (eds.), Kluwer, Dordrecht, 1993.
[38] R. Rocha-Chávez, M. Shapiro, and F. Sommen, Integral Theorems for Functions and Differential Forms in \(\mathbb{C}\)m, Chapman & Hall, Boca Raton, 2001. · Zbl 0991.32002
[39] J. J. Ryan, Complexified Clifford analysis, Complex Variables 1 (1982), 119–149. · Zbl 0503.30039
[40] J. Ryan, Some applications of conformal covariance in Clifford analysis, in: J. Ryan (ed.), Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, 1996, 129–156. · Zbl 0845.30034
[41] J. Ryan, Basic Clifford analysis, Cubo Matemática Educacional 2 (2000), 226–256. · Zbl 1071.30053
[42] M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici, Atti. Acc. Lincei Rend. Fis. 5.8 23 (1957), 220–225.
[43] F. Sommen, Microfunctions with values in a Clifford algebra II, Scientific Papers College of Arts and Sciences, University of Tokyo 36 (1986), 15–37. · Zbl 0649.30040
[44] F. Sommen, Martinelli-Bochner type formulae in complex Clifford analysis, ZAA 6 (1987), 75–82. · Zbl 0651.30027
[45] F. Sommen, Defining a q-deformed version of Clifford analysis, Complex Variables 34 (1997), 247–265. · Zbl 0904.15014 · doi:10.1080/17476939708815052
[46] F. Sommen, On a generalization of Fueter’s theorem, ZAA 19 (2000), 899–902. · Zbl 1030.30039
[47] V. Souček, Clifford analysis as a study of invariant operators, in: F. Brackx, J. S. R. Chisholm, and V. Souček (eds.), Clifford Analysis and its Applications, NATO Science Series, Kluwer, Dordrecht, 2001, 323–339.
[48] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993. · Zbl 0821.42001
[49] E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representation of the rotation group, Amer. J. Math. 90 (1968), 163–196. · Zbl 0157.18303 · doi:10.2307/2373431
[50] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 1979, 199–225. · Zbl 0399.30038
[51] N. Théodoresco, La dérivée aréolaire, Ann. Roum. Mathématiques Cahier 3, Bucarest, 1936.
[52] J. Cnops and H. Malonek, An introduction to Clifford analysis, Textos de Matemática Série B 7, Universidade de Coimbra, 1995. · Zbl 0997.15501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.