×

Clifford algebra \(\mathrm{Cl}_{3,0}\)-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets. (English) Zbl 1197.42019

Summary: It is shown how continuous Clifford \(\mathrm{Cl}_{3,0}\)-valued admissible wavelets can be constructed using the similitude group \(\mathrm{SIM}(3)\), a subgroup of the affine group of \(\mathbb R^3\). We express the admissibility condition in terms of a \(\mathrm{Cl}_{3,0}\) Clifford Fourier transform and then derive a set of important properties such as dilation, translation and rotation covariance, a reproducing kernel, and show how to invert the Clifford wavelet transform of multivector functions. We invent a generalized Clifford wavelet uncertainty principle. For scalar admissibility constant, it sets bounds of accuracy in multivector wavelet signal and image processing. As concrete example, we introduce multivector Clifford Gabor wavelets, and describe important properties such as the Clifford Gabor transform isometry, a reconstruction formula, and an uncertainty principle for Clifford Gabor wavelets.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
15A66 Clifford algebras, spinors
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Brackx F., Research Notes in Mathematics 76, in: Clifford Analysis (1982)
[2] Kuipers J. B., Quaternions and Rotation Sequences (1999) · Zbl 1053.70001
[3] Mitrea M., Lecture Notes in Mathematics 1575, in: Clifford Wavelets, Singular Integrals and Hardy Spaces (1994) · Zbl 0822.42018 · doi:10.1007/BFb0073556
[4] DOI: 10.1007/978-94-010-0862-4_2 · doi:10.1007/978-94-010-0862-4_2
[5] DOI: 10.1080/02781070290016269 · Zbl 1041.42026 · doi:10.1080/02781070290016269
[6] Zhao J., J. Natural Geom. 20 pp 21–
[7] DOI: 10.1007/s10851-005-3605-3 · Zbl 1478.94010 · doi:10.1007/s10851-005-3605-3
[8] Zhao J., Acta Sci. Natur. Univ. Pekinensis 41 pp 667–
[9] DOI: 10.1109/TVCG.2005.54 · doi:10.1109/TVCG.2005.54
[10] DOI: 10.1007/s00006-006-0003-x · Zbl 1133.42305 · doi:10.1007/s00006-006-0003-x
[11] E. Hitzer and B. Mawardi, Wavelet Analysis and Applications, Series: Applied and Numerical Harmonic Analysis, eds. T. Qian, M. I. Vai and X. Yuesheng (Springer, 2007) pp. 45–54.
[12] T. Bülow, M. Felsberg and G. Sommer, Geometric Computing with Clifford Algebras, Theoretical Foundations and Applications in Computer Vision and Robotics, ed. G. Sommer (Springer, 2001) pp. 187–207.
[13] Sangwine S. J., IEEE Trans. Image Process. 16 pp 22–
[14] DOI: 10.1007/s00006-007-0037-8 · Zbl 1143.42006 · doi:10.1007/s00006-007-0037-8
[15] Hitzer E., Mem. Fac. Eng. Fukui Univ. 49 pp 109–
[16] DOI: 10.1007/978-94-009-4802-0 · doi:10.1007/978-94-009-4802-0
[17] DOI: 10.1007/978-94-009-6292-7 · doi:10.1007/978-94-009-6292-7
[18] DOI: 10.1017/CBO9780511526022 · doi:10.1017/CBO9780511526022
[19] DOI: 10.1007/978-1-4612-1258-4 · doi:10.1007/978-1-4612-1258-4
[20] Kalisa C., Ann. Inst. H. Poincaré 59 pp 201–
[21] Mallat S., A Wavelet Tour of Signal Processing (1999) · Zbl 0945.68537
[22] DOI: 10.1109/18.761340 · Zbl 0949.42023 · doi:10.1109/18.761340
[23] Gonzales R. C., Digital Image Processing Using Matlab (2004)
[24] Lee T. S., IEEE Trans. Pattern Anal. Mach. Intell. 18 pp 1–
[25] DOI: 10.1109/29.1644 · Zbl 0709.94577 · doi:10.1109/29.1644
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.