×

Survey on gradient estimates for nonlinear elliptic equations in various function spaces. (English) Zbl 1437.35283

St. Petersbg. Math. J. 31, No. 3, 401-419 (2020) and Algebra Anal. 31, No. 3, 10-35 (2019).
Summary: Very general nonvariational elliptic equations of \(p\)-Laplacian type are treated. An optimal Calderón-Zygmund theory is developed for such a nonlinear elliptic equation in divergence form in the setting of various function spaces including Lebesgue spaces, Orlicz spaces, weighted Orlicz spaces, and variable exponent Lebesgue spaces. The addressed arguments also apply to Morrey spaces, Lorentz spaces and generalized Orlicz spaces.

MSC:

35J60 Nonlinear elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] AM1 E. Acerbi and G. Mingione, Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117-148. · Zbl 1093.76003
[2] AM2 \bysame , Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), no. 2, 285-320. · Zbl 1113.35105
[3] Brr1 V. Barbu, Nonlinear semigroups and differential equations in Banach Spaces, Editura Acad. Repub. Soc. Rom., Bucharest; Noordhoff Internat. Publ., Leiden, 1976. · Zbl 0328.47035
[4] BB1 P. Baroni and V. Bogelein, Calder\'on-Zygmund estimates for parabolic \(p(x,t)\)-Laplacian systems, Rev. Mat. Iberoam. 30 (2014), no. 4, 1355-1386. · Zbl 1316.35160
[5] Boo1 V. Bogelein, Calder\'on-Zygmund theory for nonlinear parabolic systems, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 555-596. · Zbl 1317.35107
[6] BX1 T. Bui and X. Duong, Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Art. 47. · Zbl 1488.35311
[7] B1 S. -S Byun, Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains, Forum Math. 23 (2011), no. 4, 693-711. · Zbl 1241.35064
[8] BCP1 S. -S. Byun, Y. Cho, and D. K. Palagachev, Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains, Proc. Amer. Math. Soc. 13 (2015), no. 6, 2527-2541. · Zbl 1315.35113
[9] BCW1 S. -S. Byun, Y. Cho, and L. Wang, Calder\'on-Zygmund theory for nonlinear elliptic problems with irregular obstacles, J. Funct. Anal. 263 (2012), no. 10, 3117-3143. · Zbl 1259.35094
[10] BK1 S. -S. Byun and Y. Kim, Elliptic equations with measurable nonlinearities in nonsmooth domains, Adv. Math. 288 (2016), 152-200. · Zbl 1334.35368
[11] BO1 S. -S. Byun and J. Ok, On \(W^1,q(\,\cdot \,) \)-estimates for elliptic equations o \(p(x)\)-Laplacian type, J. Math. Pures Appl. (9) 106 (2016), no. 3, 512-545. · Zbl 1344.35058
[12] BO2 \bysame , Nonlinear parabolic equations with variable exponent growth in nonsmooth domains, SIAM J. Math. Anal. 48 (2016), no. 5, 3148-3190. · Zbl 1355.35112
[13] BOPS1 S. -S. Byun, J. Ok, D. K. Palagachev, and L. Softova, Parabolic systems with measurable coefficients in weighted Orlicz spaces, Commun. Contemp. Math. 18 (2016), no. 2, 1550018. · Zbl 1336.35183
[14] BP0 S.-S. Byun and D. K. Palagachev, Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 37-76. · Zbl 1288.35255
[15] BP \bysame , Weighted \(L^p\)-estimates for elliptic equations with measurable coefficients in nonsmooth domains, Potential Anal. 41 (2014), no. 1, 51-79. · Zbl 1293.35351
[16] BPR S.-S. Byun, D. K. Palagachev, and S. Ryu, Weighted \(W^1,p\) estimates for solutions of non-linear parabolic equations over non-smooth domains, Bull. Lond. Math. Soc. 45 (2013), no. 4, 765-778. · Zbl 1317.35115
[17] BPP S.-S. Byun, D. K. Palagachev, and P. Shin, Sobolev-Morrey regularity of solutions to general quasilinear elliptic equations, Nonlinear Anal. 147 (2016), 176-190. · Zbl 1352.35050
[18] BPS S.-S. Byun, D. K. Palagachev, and Softova L., Global gradient estimates in weighted Lebesgue spaces for parabolic operators, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 67-83. · Zbl 1334.35077
[19] BP1 S.-S. Byun and J. Park, Global weighted Orlicz estimates for parabolic measure data problems: application to estimates in variable exponent spaces, J. Math. Anal. Appl. 67 (2018), no. 2, 1194-1207. · Zbl 1395.35050
[20] BR2 S. -S. Byun and S. Ryu, Weighted Orlicz estimates for general nonlinear parabolic equations over nonsmooth domains, J. Funct. Anal. 272 (2017), no. 10, 4103-4121. · Zbl 1377.35142
[21] BR1 \bysame , Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire 30 (2013), no. 2, 291-313. · Zbl 1292.35127
[22] BS S.-S. Byun and Softova L. G., Gradient estimates in generalized Morrey spaces for parabolic operators, Math. Nachr. 288 (2015), no. 14-15, 1602-1614. · Zbl 1329.35165
[23] BS1 \bysame , Parabolic obstacle problem with measurable data in generalized Morrey spaces, Z. Anal. Anwend. 35 (2016), no. 2, 153-171. · Zbl 1338.35269
[24] BW1 S.-S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math. 57 (2004), no. 10, 1283-1310. · Zbl 1112.35053
[25] BW11 \bysame , Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal. 176(2005), no. 2, 271-301. · Zbl 1073.35046
[26] BW2 \bysame , Nonlinear gradient estimates for elliptic equations of general type, Calc. Var. Partial Differential Equations 45 (2012), no. 3-4, 403-419. · Zbl 1263.35102
[27] BYZ1 S.-S. Byun, F. Yao, and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal. 45 (2008), no. 8, 1851-1873. · Zbl 1156.35038
[28] CP1 L. A. Caffarelli and I. Peral, On \(W^1,p\) estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), no. 1, 1-21. · Zbl 0906.35030
[29] CZ A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. · Zbl 0047.10201
[30] Ci1 A. Cianchi, Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoam. 20 (2004), no. 2., 427-474. · Zbl 1061.46031
[31] CF1 D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkh\"auser/Springer, Heidelberg, 2013. · Zbl 1268.46002
[32] CH1 D. V. Cruz-Uribe and P.  H\"ast\"o, Extrapolation and interpolation in generalized Orlicz spaces, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4323-4349. · Zbl 1391.46037
[33] CW1 D. V. Cruz-Uribe and L.-A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1205-1235. · Zbl 1354.42028
[34] Di1 E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. · Zbl 0794.35090
[35] DHHR1 L. Diening, P. Harjulehto, P. H\"ast\"o, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2011. · Zbl 1222.46002
[36] DKS1 L. Diening, P. Kaplicky, and S. Schwarzacher, BMO estimates for the \(p\)-Laplacian, Nonlinear Anal. 75 (2012), no. 2, 637-650. · Zbl 1233.35056
[37] DS1 L. Diening and S. Schwarzacher, Global gradient estimates for the \(p(x)\)-Laplacian, Nonlinear Anal. 106 (2014), 70-85. · Zbl 1291.35070
[38] DiF G. Di Fazio, \(L^p\) estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7) 10 (1996), no. 2, 409-420. · Zbl 0865.35048
[39] FK A. Fiorenza and M. Krbec, Indices of Orlicz spaces and some applications, Comm. Math. Univ. Carolin. 38 (1997), no. 3, 433-451. · Zbl 0937.46023
[40] GS V. S. Guliyev and L. G. Softova, Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations 259 (2015), no. 6, 2368-2387. · Zbl 1319.35070
[41] G M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., vol. 105, Princeton Univ. Press, Princeton, NJ, 1983. · Zbl 0516.49003
[42] Gi1 E. Giusti, Direct methods in the calculus of variations, World Sci. Publ. Co., Inc., River Edge, NJ, 2003. · Zbl 1028.49001
[43] Gr1 L. Grafakos, Classical Fourier analysis, Third ed., Graduate Texts in Math., vol. 249, Springer, New York, 2014. · Zbl 1304.42001
[44] Iwaniec T. Iwaniec, Projections onto gradient fields and \(L^p\)-estimates for degenerated elliptic operators, Studia Math. 75 (1983), no. 3, 293-312. · Zbl 0552.35034
[45] Iwaniec-Sbordone T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefficients, J. Anal. Math. 74 (1998), 183-212. · Zbl 0909.35039
[46] JN1 F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. · Zbl 0102.04302
[47] KT R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981/82), no. 3, 277-284. · Zbl 0517.42030
[48] KZ J. Kinnunen and Sh. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2043-2068. · Zbl 0941.35026
[49] KK1 V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Sci. Publ. Co., Inc., River Edge, NJ, 1991. · Zbl 0751.46021
[50] KoRa O. Kov\'acik and J. R\'akosn\'k, On spaces \(L^p(x)\) and \(W^k,p(x)\) Czechoslovak Math. J. 41 (1991), no. 4, 592-618. · Zbl 0784.46029
[51] KR M. A. Krasnosel\textprime skii and Ja. B. Rutickii, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., P. Noordhoff Ltd., Groningen 1961. · Zbl 0084.10104
[52] KS N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 161-175; English transl., Math. USSR-Izv. 16 (1981), no. 1, 151-164. · Zbl 0464.35035
[53] KM1 T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal. 262 (2012), no. 10, 4205-4269. · Zbl 1252.35097
[54] KM2 \bysame , Guide to nonlinear potential estimates, Bull. Math. Sci. 4 (2014), no. 1, 1-82. · Zbl 1315.35095
[55] KM3 \bysame , Linear potentials in nonlinear potential theory, Arch. Ration. Mech. Anal. 207 (2013), no. 1, 215-246. · Zbl 1266.31011
[56] KM4 \bysame , The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 835-892. · Zbl 1303.35120
[57] KM5 \bysame , Vectorial nonlinear potential theory, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 4, 929-1004. · Zbl 1394.35206
[58] LU O. A. Ladyzhenskaya and N. N.  Ural\textprime tseva, Linear and quasilinear equations of elliptic type, Nauka, M., 1973; English transl., Acad. Press, New York-London, 1968. (39:5941) · Zbl 0164.13002
[59] Landis E. M. Landis, Second order equations of elliptic and parabolic type, Nauka, M., 1971; English transl., Transl. Math. Monogr., vol. 171, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0226.35001
[60] MP T. Mengesha and N. C. Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations 250 (2011), no. 5, 2485-2507. · Zbl 1210.35094
[61] Mey N. G. Meyers, An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189-206. · Zbl 0127.31904
[62] MT1 E. Milakis and T. Toro, Divergence form operators in Reifenberg flat domains, Math. Z. 264 (2010), no. 1, 15-41. · Zbl 1186.35047
[63] M C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., Bd. 130, Springer-Verlag, Inc., New York, 1966. · Zbl 0142.38701
[64] Mu B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. · Zbl 0236.26016
[65] Or W. Orlicz, \"Uber konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-211. · Zbl 0003.25203
[66] PS D. K. Palagachev and L. Softova, The Calder\'on-Zygmund property for quasilinear divergence form equations over Reifenberg flat domains, Nonlinear Anal. 74 (2011), no. 5, 1721-1730. · Zbl 1209.35047
[67] RR M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., vol. 146, Marcel Dekker, Inc., New York, 1991. · Zbl 0724.46032
[68] R E. R. Reifenberg, Solution of the Plateau problem for \(m\)-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. · Zbl 0099.08503
[69] Sa1 D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. · Zbl 0319.42006
[70] Sh1 I. I. Sharapudinov, The topology of the space \(L^p(t)([0;1])\) Mat. Zametki 26 (1978), no. 4, 613-632; English transl., Math. Notes 26 (1979), no. 3-4, 796-806. · Zbl 0437.46024
[71] St E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Math. Ser., vol. 43, Monogr. Harmon. Anal. III, Princeton Univ. Press, Princeton, NJ, 1993. · Zbl 0821.42001
[72] To A. Torchinsky, Real-variable methods in harmonic analysis, Pure Appl. Math., vol. 123, Acad. Press, Inc., Orlando, FL, 1986. · Zbl 0621.42001
[73] Toro T. Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc. 44 (1997), no. 9, 1087-1094. · Zbl 0909.31006
[74] Ts1 I. V. Cenov, On some questions in the theory of approximation of functions in the spaces \(L^s\), Uchen. Zap. Dagestan. Gos. Univ. 7 (1961), 25-37. (Russian)
[75] W1 L. Wang, A geometric approach to the Calder\'on-Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 2, 381-396. · Zbl 1026.31003
[76] WYZJ1 L. Wang, F. Yao, S. Zhou, and H. Jia, Optimal regularity theory for the Poisson equation, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2037-2047. · Zbl 1166.35011
[77] Ya1 F. Yao F., Local gradient estimates for the \(p(x)\)-Laplacian elliptic equations, Math. Inequal. Appl. 17 (2014), no. 1, 259-268. · Zbl 1294.35039
[78] Zh C. Zhang C., Global weighted estimates for the nonlinear parabolic equations with non-standard growth, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 109. · Zbl 1388.35110
[79] Zh0 V. V. Zhikov, Questions of convergence, duality and averaging for functionals of the calculus of variations, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 5, 961-998; English transl., Math. USSR-Izv. 23 (1984), no. 2, 243-276. · Zbl 0551.49012
[80] Zh1 \bysame , Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710; English transl., Math. USSR-Izv. 29 (1987), no. 1, 33-66. · Zbl 0599.49031
[81] Zh2 \bysame , On Lavrentiev’s phenomenon, Russian J. Math. Phys. 3 (1995), no. 2, 249-269. · Zbl 0910.49020
[82] Zh3 \bysame , Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn. 33 (1997), no. 1, 107-114; English transl., Differential Equations 33 (1997), no. 1, 108-115. · Zbl 0911.35089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.