×

Gradient estimates in generalized Morrey spaces for parabolic operators. (English) Zbl 1329.35165

The paper deals with some regularity issues for weak solutions of the Cauchy-Dirichlet problem \[ \begin{cases} u_t-D_\alpha(a^{\alpha\beta}(x,t)D_\beta u)= D_\alpha f^\alpha(x,t) & \text{in}\;Q=\Omega\times(0,T),\\ u(x,t)=0 & \text{on}\;\partial_PQ, \end{cases} \] where \(\Omega\subset \mathbb{R}^n\) is a bounded domain and \(\partial_PQ\) is the parabolic boundary of the cylinder \(Q.\)
Under the assumptions of partial BMO smallness of the coefficients \(a^{\alpha\beta}\) and Reifenberg flatness of \(\partial\Omega,\) the authors obtain global regularity in generalized Morrey spaces for the spatial gradient of the weak solutions, developing in this way a Calderón-Zygmund-type theory for the operators considered. Problems as those considered in the paper arise in the modeling of composite materials and in the mechanics of membranes and films of simple nonhomogeneous materials which form a linear laminated medium.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs
35K40 Second-order parabolic systems
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI

References:

[1] S.‐S.Byun, Parabolic equations with BMO coefficients in Lipschitz domains, J. Differential Equations209(2), 229-265 (2005). · Zbl 1061.35021
[2] S.‐S.Byun, Optimal \(W^{1 , p}\) regularity theory for parabolic equations in divergence form, J. Evol. Equ.7(3), 415-428 (2007). · Zbl 1221.35426
[3] S.‐S.Byun and D. K.Palagachev, Weighted \(L^p\)‐estimates for elliptic equations with measurable coefficients in nonsmooth domains, Potential Anal.41(1), 51-79 (2014). · Zbl 1293.35351
[4] S.‐S.Byun and D. K.Palagachev, Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains, Calc. Var. Partial Differential Equations49(1‐2), 37-76 (2014). · Zbl 1288.35255
[5] S.‐S.Byun, D. K.Palagachev, and L. G.Softova, Global gradient estimate in weighted Lebesgue spaces for parabolic operators, http://arxiv.org/pdf/1309.6199.pdf. · Zbl 1437.35283
[6] S.‐S.Byun, D. K.Palagachev, and L.Wang, Parabolic systems with measurable coefficients in Reifenberg domains, Int. Math. Res. Not.2013(13), 3053-3086 (2013). · Zbl 1319.35074
[7] S.‐S.Byun and L.Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal.176(2), 271-301 (2005). · Zbl 1073.35046
[8] S.‐S.Byun and L.Wang, \(L^p\)‐regularity for fourth order parabolic systems with measurable coefficients, Math. Z.272(1-2), 515-530 (2012). · Zbl 1255.35132
[9] F.Chiarenza and M.Frasca, Morrey spaces and Hardy‐Littlewood maximal function, Rend. Mat.7, 273-279 (1987). · Zbl 0717.42023
[10] M.Chipot, D.Kinderlehrer, and G.Vergara‐Caffarelli, Smoothness of linear laminates, Arch. Ration. Mech. Anal.96(1), 81-96 (1986). · Zbl 0617.73062
[11] R. R.Coifman and R.Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc.79(2), 249-254 (1980). · Zbl 0432.42016
[12] H.Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal.205(1), 119-149 (2012). · Zbl 1258.35040
[13] H.Dong and D.Kim, Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular and irregular domains, J. Funct. Anal.261(11), 3279-3327 (2011). · Zbl 1231.35093
[14] E. B.Fabes and N. MRivière, Singular integrals with mixed homogeneity, Studia Math.27, 19-38 (1966). · Zbl 0161.32403
[15] V. S.Guliyev and L. G.Softova, Generalized Morrey regularity for parabolic equations with discontinous data, Proc. Edinb. Math. Soc. (2) 58(1), 1-23 (2014).
[16] V. S.Guliyev and L. G.Softova, Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal.38, 843-862 (2013). · Zbl 1271.42020
[17] C.Kenig and T.Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. Éc. Norm. Supér. (4)36(3), 323-401 (2003). · Zbl 1027.31005
[18] A.Lemenant, E.Milakis, and L. V.Spinolo, On the extension property of Reifenberg‐flat domains, Ann. Acad. Sci. Fenn. Math.39(1), 51-71 (2014). · Zbl 1292.49042
[19] Y.Li and M.Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal.153(2), 91-151 (2000). · Zbl 0958.35060
[20] T.Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, In: Harmonic Analysis, Proc. Conf., Sendai/Jap. 1990, ICM‐90 Satellite Conference Proceedings (Springer Verlay, 1991), pp. 183-189. · Zbl 0771.42007
[21] C. B.Morrey, On the solutions of quasi‐linear elliptic partial differential equations, Trans. Amer. Math. Soc.43, 126-166 (1938). · JFM 64.0460.02
[22] E.Nakai, Hardy‐Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr.166, 95-103 (1994). · Zbl 0837.42008
[23] E. R.Reifenberg, Solution of the Plateau problem for m‐dimensional surfaces of varying topological type, Acta Math.104, 1-92 (1960). · Zbl 0099.08503
[24] L. G.Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.)22(3), 757-766 (2006). · Zbl 1129.42372
[25] L. G.Softova, Morrey‐type regularity of solutions to parabolic problems with discontinuous data, Manuscripta Math.136(3-4), 365-382 (2011). · Zbl 1270.35153
[26] L. G.Softova, Parabolic oblique derivative problem with discontinuous coefficients in generalized Morrey spaces, Ric. Mat.62, 265-278 (2013). · Zbl 1307.35073
[27] E.Stein, Harmonic Analysis: Real‐Variable Methods, Orthogonality and Oscillatory Integrals (Princeton Univ. Press, Princeton, 1993). · Zbl 0821.42001
[28] T.Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc.44(9), 1087-1094 (1997). · Zbl 0909.31006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.