×

Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains. (English) Zbl 1288.35255

The main purpose of this paper is to obtain some regularity results to the following discontinuous quasilinear divergence form elliptic equation \[ \begin{cases}\mathrm{div}(a^{ij}(x, u)D_ju+a^{i}(x, u))+ a(x, u, Du)=0&\text{in }\Omega,\\ u=0 &\text{on }\partial\Omega, \end{cases}\tag{P} \] where \(\Omega \) is a bounded domain of \(\mathbb R^n, n\geq 2.\) The discontinuous nonlinear terms \(a^{ij},\; a^i: \Omega \times \mathbb R \rightarrow \mathbb R \) and \(a: \Omega \times \mathbb R \times \mathbb R^n \rightarrow \mathbb R\) are Carathéodory functions that satisfy some controlled growth conditions and the non-smooth boundary \(\partial\Omega\) is supposed to be well approximated by hyperplanes at each point and at each scale (Reifenberg flat). Further, the authors prove that the gradient \(Du\) belongs to an appropriate Morrey space. Also global Hölder continuity of the weak solution \(u\) with exact value of the corresponding exponent is established.

MSC:

35J62 Quasilinear elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Adams D.R.: Traces of potentials arising from translation invariant operators. Ann. Sci. Norm. Super. Pisa Sci. Fis. Mat. III. Ser. 25, 203-217 (1971) · Zbl 0219.46027
[2] Adams D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[3] Auscher P., Qafsaoui M.: Observations on W1,p estimates for divergence elliptic equations with VMO coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.(8) 5(2), 487-509 (2002) · Zbl 1173.35419
[4] Byun, S.-S., Palagachev, D.K.: Weighted Lp-estimates for elliptic equations with measurable coefficients in nonsmooth domains (2012). eprint arXiv:1210.6359 · Zbl 0909.31006
[5] Byun S.-S., Wang L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283-1310 (2004) · Zbl 1112.35053 · doi:10.1002/cpa.20037
[6] Byun S.-S., Wang L.: Parabolic equations in Reifenberg domains. Arch. Ration. Mech. Anal. 176(2), 271-301 (2005) · Zbl 1073.35046 · doi:10.1007/s00205-005-0357-6
[7] Byun S.-S., Wang L.: Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math. 225(5), 2648-2673 (2010) · Zbl 1198.35068 · doi:10.1016/j.aim.2010.05.014
[8] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarità all’interno. Pubblicazioni della Classe di Scienze: Quaderni. Scuola Normale Superiore, Pisa (1980) · Zbl 0453.35026
[9] Chipot M., Kinderlehrer D., Vergara-Caffarelli G.: Smoothness of linear laminates. Arch. Ration. Mech. Anal. 96(1), 81-96 (1986) · Zbl 0617.73062 · doi:10.1007/BF00251414
[10] Dal Maso G., Mosco U.: Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Ration. Mech. Anal. 95(4), 345-387 (1986) · Zbl 0634.35033 · doi:10.1007/BF00276841
[11] David G., De Pauw T., Toro T.: A generalization of Reifenberg’s theorem in \[{\mathbb{R}^3} \] . Geom. Funct. Anal. 18(4), 1168-1235 (2008) · Zbl 1169.49040 · doi:10.1007/s00039-008-0681-8
[12] De Giorgi E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino P. I. III. Ser. 3 3, 25-43 (1957) · Zbl 0084.31901
[13] Di Fazio G.: Lp estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Unione Mat. Ital. VII. Ser. A 10(2), 409-420 (1996) · Zbl 0865.35048
[14] Dong H., Kim D.: Lp-solvability of divergence type parabolic and elliptic systems with partially BMO coefficients. Calc. Var. Partial Differ. Equ. 40(3-4), 357-389 (2011) · Zbl 1216.35160 · doi:10.1007/s00526-010-0344-0
[15] Dong H., Kim D.: Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth. Commun. Partial Differ. Equ. 36(10-12), 1750-1777 (2011) · Zbl 1233.35059 · doi:10.1080/03605302.2011.571746
[16] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983) · Zbl 0516.49003
[17] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001) · Zbl 1042.35002
[18] Hartman P., Stampacchia G.: On some non-linear elliptic differential functional equations. Acta Math. 115, 271-310 (1966) · Zbl 0142.38102 · doi:10.1007/BF02392210
[19] Krylov N V.: Second-order elliptic equations with variably partially VMO coefficients. J. Funct. Anal. 257(6), 1695-1712 (2009) · Zbl 1171.35352 · doi:10.1016/j.jfa.2009.06.014
[20] Kuusi T., Mingione G.: Universal potential estimates. J. Funct. Anal. 262(10), 4205-4269 (2012) · Zbl 1252.35097 · doi:10.1016/j.jfa.2012.02.018
[21] Ladyzhenskaya O.A., Ural’tseva N.N.: On the smoothness of weak solutions of quasilinear equations in several variables and of variational problems. Commun. Pure Appl. Math. 14, 481-495 (1961) · Zbl 0131.09402 · doi:10.1002/cpa.3160140323
[22] Ladyzhenskaya O.A., Ural’tseva N.N.: Linear and Quasilinear Equations of Elliptic Type. 2nd edn. Nauka, Moscow (in Russian) (1973) · Zbl 0269.35029
[23] Lewy H., Stampacchia G.: On the smoothness of superharmonics which solve a minimum problem. J. Anal. Math. 23(1), 227-236 (1970) · Zbl 0206.40702 · doi:10.1007/BF02795502
[24] Li Y.-Y., Nirenberg L.: Estimates for elliptic systems from composite material. Commun. Pure Appl. Math. 56(7), 892-925 (2003) · Zbl 1125.35339 · doi:10.1002/cpa.10079
[25] Li Y.-Y., Vogelius M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153(2), 91-151 (2000) · Zbl 0958.35060 · doi:10.1007/s002050000082
[26] Lieberman G M.: Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures. Commun. Partial Differ. Equ. 18(7-8), 1191-1212 (1993) · Zbl 0802.35041 · doi:10.1080/03605309308820969
[27] Maugeri A., Palagachev D.K., Softova L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Wiley-VCH, Berlin (2000) · Zbl 0958.35002 · doi:10.1002/3527600868
[28] Mengesha T., Phuc N.-C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189-216 (2012) · Zbl 1255.35113 · doi:10.1007/s00205-011-0446-7
[29] Morrey C.B. Jr.: Second order elliptic equations in several variables and Hölder continuity. Math. Z. 72(1), 146-164 (1959) · Zbl 0094.07802 · doi:10.1007/BF01162944
[30] Mingione G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 195-261 (2007) · Zbl 1178.35168
[31] Mingione G.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571-627 (2010) · Zbl 1193.35077 · doi:10.1007/s00208-009-0411-z
[32] Mingione G.: Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13(2), 459-486 (2011) · Zbl 1217.35077
[33] Palagachev D.K.: Quasilinear elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 347(7), 2481-2493 (1995) · Zbl 0833.35048 · doi:10.1090/S0002-9947-1995-1308019-6
[34] Palagachev D.K.: Global Hölder continuity of weak solutions to quasilinear divergence form elliptic equations. J. Math. Anal. Appl. 359(1), 159-167 (2009) · Zbl 1177.35080 · doi:10.1016/j.jmaa.2009.05.044
[35] Palagachev D.K.: Discontinuous superlinear elliptic equations of divergence form. NoDEA, Nonlinear Differ. Equ. Appl. 16(6), 811-822 (2009) · Zbl 1185.35310 · doi:10.1007/s00030-009-0036-7
[36] Palagachev D.K., Softova L.G.: Quasilinear divergence form parabolic equations in Reifenberg flat domains. Discr. Contin. Dyn. Syst. A 31(4), 1397-1410 (2011) · Zbl 1235.35176 · doi:10.3934/dcds.2011.31.1397
[37] Palagachev D.K., Softova L.G.: The Calderón-Zygmund property for quasilinear divergence form equations over Reifenberg flat domains. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 74(5), 1721-1730 (2011) · Zbl 1209.35047 · doi:10.1016/j.na.2010.10.044
[38] Palagachev D.K., Recke L., Softova L.G.: Applications of the differential calculus to nonlinear elliptic operators with discontinuous coefficients. Math. Ann. 336(3), 617-637 (2006) · Zbl 1194.35157 · doi:10.1007/s00208-006-0014-x
[39] Piccinini L.C.: Inclusioni tra spazi di Morrey. Boll. Unione Mat. Ital. IV. Ser. 2, 95-99 (1969) · Zbl 0181.13403
[40] Rakotoson J.-M., Ziemer W.P.: Local behavior of solutions of quasilinear elliptic equations with general structure. Trans. Am. Math. Soc. 319(2), 747-764 (1990) · Zbl 0708.35023 · doi:10.1090/S0002-9947-1990-0998128-9
[41] Reifenberg E.R.: Solution of the Plateau problem for m-dimensional surfaces of varying topological type. Acta Math. 104(1-2), 1-92 (1960) · Zbl 0099.08503 · doi:10.1007/BF02547186
[42] Toro T.: Doubling and flatness: geometry of measures. Notices Am. Math. Soc. 44(9), 1087-1094 (1997) · Zbl 0909.31006
[43] Trudinger N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721-747 (1967) · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[44] Zamboni P.: Local boundedness of solutions of quasilinear elliptic equations with coefficients in Morrey spaces. Boll. Unione Mat. Ital. VII. Ser. B 8(4), 985-997 (1994) · Zbl 0827.35040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.