×

Morrey-type regularity of solutions to parabolic problems with discontinuous data. (English) Zbl 1270.35153

Summary: We consider regular oblique derivative problem in cylinder \(Q_{T} = \Omega \times (0, T), \, {\Omega\subset \mathbb R^n}\) for uniformly parabolic operator \({\mathfrak P = D_t - \sum_{i,j=1}^n a^{ij}(x)D_{ij}}\) with VMO principal coefficients. Its unique strong solvability is proved in [the author, Manuscr. Math. 103, No. 2, 203–220 (2000; Zbl 0963.35032)], when \({\mathfrak P u \in L^p(Q_T)}, \, {p \in (1,\infty)}\). Our aim is to show that the solution belongs to the generalized Sobolev-Morrey space \({W^{2,1}_{p,\omega}(Q_T)}\), when \({\mathfrak P u\in L^{p,\omega} (Q_T)}\), \({p \in (1,\infty)}\), \({\omega(x,r): \, {\mathbb R}^{n+1}_+ \to {\mathbb R}_+}\). For this goal an a priori estimate is obtained relying on explicit representation formula for the solution. Analogous result holds also for the Cauchy-Dirichlet problem.

MSC:

35B45 A priori estimates in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35D35 Strong solutions to PDEs
35R05 PDEs with low regular coefficients and/or low regular data
35B65 Smoothness and regularity of solutions to PDEs

Citations:

Zbl 0963.35032
Full Text: DOI

References:

[1] Bramanti M.: Commutators of integral operators with positive kernels. Le Matematiche 49, 149–168 (1994) · Zbl 0840.42009
[2] Bramanti M., Cerutti M.C.: $${W_{p}\^{1,2}}$$ solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients. Commun. Partial Differ. Eq. 18, 1735–1763 (1993) · Zbl 0816.35045 · doi:10.1080/03605309308820991
[3] Calderón A.P., Zygmund A.: On the existence of certain singular integrals. Acta. Math. 88, 85–139 (1952) · Zbl 0047.10201 · doi:10.1007/BF02392130
[4] Calderón A.P., Zygmund A.: Singular integral operators and differential equations. Am. J. Math. 79, 901–921 (1957) · Zbl 0081.33502 · doi:10.2307/2372441
[5] Chiarenza F., Frasca M., Longo P.: Interior W 2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ric. Mat. 40, 149–168 (1991) · Zbl 0772.35017
[6] Chiarenza F., Frasca M., Longo P.: W 2,p solvability of the Dirichlet problem for nondivergence form elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336, 841–853 (1993) · Zbl 0818.35023
[7] Fabes E.B., Rivière N.: Singular integrals with mixed homogeneity. Stud. Math. 27, 19–38 (1966) · Zbl 0161.32403
[8] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. 2nd edn. Springer–Verlag, Berlin (1983) · Zbl 0562.35001
[9] John F., Nirenberg L.: On functions of bounded mean oscillation. Commun’. Pure Appl. Math. 14, 415–426 (1961) · Zbl 0102.04302 · doi:10.1002/cpa.3160140317
[10] Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, Amer. Math, Soc., Providence, R.I. (2008) · Zbl 1147.35001
[11] Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematics Monographs, vol. 23. American Mathematical Society, Providence (1968)
[12] Maugeri A., Palagachev D.K., Softova L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Wiley-VCH, Berlin (2000) · Zbl 0958.35002
[13] Mingione G.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571–627 (2010) · Zbl 1193.35077 · doi:10.1007/s00208-009-0411-z
[14] Mingione G.: Gradient potential estimates. J. Eur. Math. Soc. 13(2), 459–486 (2011) · Zbl 1217.35077
[15] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Anal., Proc. Conf., Sendai, Japan, 1990. ICM-90 Satellite Conference Proceedings, pp. 183–189 (1991) · Zbl 0771.42007
[16] Morrey C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43(1), 126–166 (1938) · JFM 64.0460.02 · doi:10.1090/S0002-9947-1938-1501936-8
[17] Nakai E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994) · Zbl 0837.42008 · doi:10.1002/mana.19941660108
[18] Palagachev D.K., Ragusa M.A., Softova L.G.: Cauchy–Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8, 667–683 (2003) · Zbl 1121.35067
[19] Sarason D.: Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975) · Zbl 0319.42006 · doi:10.1090/S0002-9947-1975-0377518-3
[20] Softova L.G.: Oblique derivative problem for parabolic operators with VMO coefficients. Manuscr. Math. 103, 203–220 (2000) · Zbl 0963.35032
[21] Softova L.G.: Parabolic equations with VMO coefficients in Morrey spaces. Electron. J. Differ. Eq. 51, 1–25 (2001) · Zbl 1068.35517
[22] Softova L.G.: Singular integrals and commutators in generalized Morrey spaces. Acta Math. Sin. Engl. Ser. 22, 757–766 (2006) · Zbl 1129.42372 · doi:10.1007/s10114-005-0628-z
[23] Solonnikov, V.A.: Estimates in L p of solutions of elliptic and parabolic systems. Proc. Steklov Inst. Math. 102, 137–160 (1967); English translation: Ladyzhenskaya, O.A. (ed.) Boundary Value Problems of Mathematical Physics, vol. V, pp. 157–185. American Mathematical Society, Providence (1970) · Zbl 0204.42101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.