×

Global weighted estimates for the nonlinear parabolic equations with non-standard growth. (English) Zbl 1388.35110

Summary: In this paper we consider a nonlinear parabolic equation of \(p(x,t)\)-Laplacian type in divergence form with measurable data over non-smooth domains. We establish the global Calderón-Zygmund theory for the weak solutions of such a problem in the setting of weighted Lebesgue spaces. The nonlinearity of the coefficients is assumed to be discontinuous with respect to \((x,t)\)-variables and the lateral boundary of the domain is sufficiently flat beyond the Lipchitz category. As an application of the main result, the regularity in parabolic Morrey scales for the spatial gradient is also obtained.

MSC:

35K59 Quasilinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35R05 PDEs with low regular coefficients and/or low regular data
35R35 Free boundary problems for PDEs
Full Text: DOI

References:

[1] Acerbi, E., Mingione, G.: Gradient estimates for the \[p(x)\] p(x)-Laplacean system. J. Reine Angew. Math. 584, 117-148 (2005) · Zbl 1093.76003 · doi:10.1515/crll.2005.2005.584.117
[2] Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285-320 (2007) · Zbl 1113.35105 · doi:10.1215/S0012-7094-07-13623-8
[3] Baroni, P., Bögelein, V.: Calderón-Zygmund estimates for parabolic \[p(x, t)\] p(x,t)-Laplacian systems. Rev. Mat. Iberoam. 30(4), 1355-1386 (2014) · Zbl 1316.35160 · doi:10.4171/RMI/817
[4] Bögelein, V., Duzaar, F.: Highter integrability for parabolic systems with non-standard growth and degenerate diffusions. Publ. Mat. 55, 201-250 (2011) · Zbl 1213.35148 · doi:10.5565/PUBLMAT_55111_10
[5] Byun, S., Cho, Y., Palagachev, D.: Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains. Proc. Am. Math. Soc. 143(6), 2527-2541 (2015) · Zbl 1315.35113 · doi:10.1090/S0002-9939-2015-12458-6
[6] Byun, S., Ok, J., Ryu, S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290-4326 (2013) · Zbl 1284.35092 · doi:10.1016/j.jde.2013.03.004
[7] Byun, S., Ok, J., Ryu, S.: Global gradient estimates for elliptic equations of \[p(x)\] p(x)-Laplacian type with BMO nonlinearity. J. Reine Angew. Math. 715, 1-38 (2016) · Zbl 1347.35095 · doi:10.1515/crelle-2014-0004
[8] Byun, S., Ok, J., Palagachev, D., Sofotova, L.: Parabolic systems with measurable coefficients in weighted Orlicz spaces. Commun. Contemp. Math. 18(2), 1550018 (2016) · Zbl 1336.35183 · doi:10.1142/S0219199715500182
[9] Byun, S., Ryu, S.: Global weighted estimates for the gradient of solutions to nonlinear elliptic equations. Ann. Inst. H. Poincare Anal. Non Lineaire 30(2), 291-313 (2013) · Zbl 1292.35127 · doi:10.1016/j.anihpc.2012.08.001
[10] Byun, S., Wang, L.: Parabolic equations in Reifenberg domains. Arch. Ration. Mech. Anal. 176(2), 271-301 (2005) · Zbl 1073.35046 · doi:10.1007/s00205-005-0357-6
[11] Byun, S., Wang, L.: \[L^p\] Lp estimates for parabolic equations in Reifenberg domains. J. Funct. Anal. 223(1), 44-85 (2005) · Zbl 1075.35016 · doi:10.1016/j.jfa.2004.10.014
[12] Byun, S., Wang, L.: Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212(2), 797-818 (2007) · Zbl 1117.35080 · doi:10.1016/j.aim.2006.12.002
[13] Byun, S., Wang, L.: Parabolic equations with BMO nonlinearity in Reifenberg domains. J. Reine Angew. Math. 615, 1-24 (2008) · Zbl 1160.35035 · doi:10.1515/CRELLE.2008.007
[14] Caffarelli, L.A., Peral, I.: On \[W^{1, p}\] W1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1-21 (1998) · Zbl 0906.35030 · doi:10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
[15] DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1-22 (1985) · Zbl 0549.35061
[16] DiBenedetto, E., Manfredi, J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 155, 1107-1134 (1993) · Zbl 0805.35037 · doi:10.2307/2375066
[17] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011) · Zbl 1222.46002
[18] Fan, X., Zhao, D.: On the spaces \[L^{p(x)}(\Omega )\] Lp(x)(Ω) and \[W^{m, p(x)}(\Omega )\] Wm,p(x)(Ω). J. Math. Anal. Appl. 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[19] Hong, G., Wang, L.: A geometric approach to the topological disk theorem for Reifenberg. Pac. J. Math. 233(2), 321-339 (2007) · Zbl 1155.49037 · doi:10.2140/pjm.2007.233.321
[20] Iwaniec, T.: Projections onto gradient fields and \[L^p\] Lp-estimates for degenerated elliptic operators. Studia Math. 75, 293-312 (1983) · Zbl 0552.35034
[21] Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24(11-12), 2043-2068 (1999) · Zbl 0941.35026 · doi:10.1080/03605309908821494
[22] Kováčik, O., Rákosník, J.: On spaces \[L^{p(x)}\] Lp(x) and \[W^{k, p(x)}\] Wk,p(x). Czechoslov. Math. J. 41, 592-618 (1991) · Zbl 0784.46029
[23] Lieberman, G.: Boundary and initial regularity for solutions of degenerate parabolic equations. Nonlinear Anal. 20(5), 551-569 (1993) · Zbl 0782.35036 · doi:10.1016/0362-546X(93)90038-T
[24] Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250(5), 2485-2507 (2011) · Zbl 1210.35094 · doi:10.1016/j.jde.2010.11.009
[25] Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203, 189-216 (2012) · Zbl 1255.35113 · doi:10.1007/s00205-011-0446-7
[26] Phuc, N.C.: Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(1), 1-17 (2011) · Zbl 1228.35260
[27] Phuc, N.C.: Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387-419 (2014) · Zbl 1323.35190 · doi:10.1016/j.aim.2013.09.022
[28] Misawa, M.: \[L^q\] Lq estimates of gradients for evolutional \[p\] p-Laplacian systems. J. Differ. Equ. 219, 390-420 (2006) · Zbl 1096.35028 · doi:10.1016/j.jde.2004.11.003
[29] Musielak, J.: Orlicz Spaces and Modular Spaces. Springer, Berlin (1983) · Zbl 0557.46020 · doi:10.1007/BFb0072210
[30] Reifenberg, E.: Solution of the Plateau problem for \[m\] m-dimensional surfaces of varying topological type. Acta Math. 104, 1-92 (1960) · Zbl 0099.08503 · doi:10.1007/BF02547186
[31] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000) · Zbl 0962.76001
[32] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[33] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, vol. 123. Academic Press, Orlando (1986) · Zbl 0621.42001
[34] Toro, T.: Doubling and flatness: geometry of measures. Notices Am. Math. Soc. 44(9), 1087-1094 (1997) · Zbl 0909.31006
[35] Yao, F.: Weighted gradient estimates for the parabolic \[p\] p-Laplacian equations. Nonlinear Anal. 112, 58-68 (2015) · Zbl 1304.35157 · doi:10.1016/j.na.2014.09.010
[36] Zhang, C., Zhou, S.: Global weighted estimates for quasilinear elliptic equations with non-standard growth. J. Funct. Anal. 267, 605-642 (2014) · Zbl 1294.35183 · doi:10.1016/j.jfa.2014.03.022
[37] Zhang, C., Zhou, S., Xue, X.: Global gradient estimates for the parabolic \[p(x, t)\] p(x,t)-Laplacian equation. Nonlinear Anal. 105, 86-101 (2014) · Zbl 1287.35095 · doi:10.1016/j.na.2014.04.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.