×

On Lie symmetry analysis of certain coupled fractional ordinary differential equations. (English) Zbl 1497.34015

Summary: In this article, we explain how to extend the Lie symmetry analysis method for \(n\)-coupled system of fractional ordinary differential equations in the sense of Riemann-Liouville fractional derivative. Also, we systematically investigated how to derive Lie point symmetries of scalar and coupled fractional ordinary differential equations namely (i) fractional Thomas-Fermi equation, (ii) Bagley-Torvik equation, (iii) two-coupled system of fractional quartic oscillator, (iv) fractional type coupled equation of motion and (v) fractional Lotka-Volterra ABC system. The dimensions of the symmetry algebras for the Bagley-Torvik equation and its various cases are greater than 2 and for this reason we construct optimal system of one-dimensional subalgebras. In addition, the exact solutions of the above mentioned fractional ordinary differential equations are explicitly derived wherever possible using the obtained symmetries.

MSC:

34A08 Fractional ordinary differential equations
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
26A33 Fractional derivatives and integrals

References:

[1] Adomian, G., Solution of the Thomas-Fermi equation, App. Math. Lett., 11, 131-133, 1998 · Zbl 0947.34501
[2] Arrigo, DJ, Symmetry Analysis of Differential Equations: An Introduction, 192, 2015, New Jersey: John Wiley & Sons, New Jersey · Zbl 1312.00002
[3] Bagley, RL; Torvik, PJ, On the appearance of the fractional derivative in the behavior of real materials, ASME J. Appl. Mech., 51, 294-298, 1984 · Zbl 1203.74022
[4] Bakkyaraj, T., Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative, Eur. Phys. J. Plus, 135, 126, 2020
[5] Bakkyaraj, T.; Sahadevan, R., Group formalism of Lie transformations to time-fractional partial differential equations, Pramana - J. Phys., 85, 849-860, 2015
[6] Bakkyaraj, T.; Sahadevan, R., Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative, Nonlinear Dyn., 80, 447-455, 2015 · Zbl 1345.34003
[7] Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, AI, Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon—Sawada-Kotera equation, Commun. Nonlinear Sci. Numer. Simulat., 59, 222-234, 2018 · Zbl 1510.35365
[8] G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, 2002. · Zbl 1013.34004
[9] Chauhan, A.; Arora, R., Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis, Commun. Math., 27, 171-185, 2019 · Zbl 1464.34018
[10] Chauhan, A.; Sharm, K.; Arora, R., Lie symmetry analysis, optimal system, and generalized group invariant solutions of the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Math. Meth. Appl. Sci., 43, 8823-8840, 2020 · Zbl 1455.35215
[11] Choudhary, S.; Prakash, P.; Daftardar-Gejji, V., Invariant subspaces and exact solutions for a system of fractional PDEs in higher dimensions, Comp. Appl. Math, 38, 126, 2019 · Zbl 1449.35435
[12] Dahmani, Z.; Anber, A., Two numerical methods for solving the fractional Thomas-Fermi equation, J. Interdisciplinary Math., 18, 35-41, 2015
[13] Das, S.; Gupta, PK, A mathematical model on fractional Lotka-Volterra equations, J. Theor. Biol., 277, 1-6, 2011 · Zbl 1405.92227
[14] Diethelm, K.; Ford, NJ, Numerical solution of the Bagley-Torvik equation, BIT Numer. Math., 42, 490-507, 2002 · Zbl 1035.65067
[15] Du, XX; Tian, B.; Qu, QX; Yuan, YQ; Zhao, XH, Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fractals, 134, 109709, 2020 · Zbl 1483.35177
[16] El-Nabulsi, RA, The fractional Boltzmann transport equation, Comput. Math. Appl., 62, 1568-1575, 2011 · Zbl 1228.82075
[17] Feng, W.; Sun, S.; Sun, Y., Existence of positive solutions for a generalized and fractional ordered Thomas-Fermi theory of neutral atoms, Adv. Differ. Equ, 2015, 350, 2015 · Zbl 1422.34031
[18] R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik USATU 9 (2007), 125-135. (in Russian)
[19] R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Group-invariant solutions of fractional differential equations, in: J.A.T. Machado, A.C.J. Luo, R.S. Barbosa, M.F. Silva, L.B. Figueiredo, (eds.), Nonlinear Science and Complexity, Springer, Dordrecht, Heidelberg, 2011, pp. 51-59. · Zbl 1217.37066
[20] Gazizov, RK; Kasatkin, AA; Lukashchuk, SY, Symmetry properties of fractional diffusion equations, Phys. Scr, 136, 014016, 2009
[21] Gazizov, RK; Kasatkin, AA, Construction of exact solutions for fractional order differential equations by the invariant subspace method, Comput. Math. Appl., 66, 576-584, 2013 · Zbl 1348.34012
[22] A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, Singapore, 2001, p. 436. · Zbl 1002.34001
[23] Górka, P.; Prado, H.; Trujillo, J., The time fractional Schrödinger equation on Hilbert space, Integr. Equ. Oper. Theory, 87, 1-14, 2017 · Zbl 1368.35231
[24] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett, 91, 034101, 2003
[25] Herrmann, R., Infrared spectroscopy of diatomic molecules — a fractional calculus approach, Int. J. Mod. Phys. B, 27, 1350019, 2013
[26] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000, p. 472. · Zbl 0998.26002
[27] P.E. Hydon, Symmetry Methods for Differential Equations, Cambridge University Press, Cambridge, 2000. · Zbl 0951.34001
[28] N.H. Ibragimov, CRC Handbook of Lie group Analysis of Differential Equations, vol. 1: Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, FL, USA, 1994. · Zbl 0864.35001
[29] Jefferson, GF; Carminati, J., FracSym: automated symbolic computation of Lie symmetries of fractional differential equations, Comput. Phys. Commun., 185, 430-441, 2014 · Zbl 1344.35003
[30] Kasatkin, AA, Symmetry properties for systems of two ordinary fractional differential equations, Ufa Mathematical J., 4, 65-75, 2012
[31] Kaur, B.; Gupta, RK, Multiple types of exact solutions and conservation laws of new coupled (2 + 1)-dimensional Zakharov-Kuznetsov system with time-dependent coefficients, Pramana - J. Phys, 93, 59, 2019
[32] A.A. Kilbas, J.J. Trujillo, H.M. Srivastava, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, p. 540. · Zbl 1092.45003
[33] Y. Kosmann-Schwarzbach, B. Grammaticos, K.M. Tamizhmani, Integrability of Nonlinear systems, Springer-Verlag, Berlin, 2004. · Zbl 1034.93002
[34] Lakshmanan, M.; Kaliappan, P., Lie transformations, nonlinear evolution equations, and Painlevé forms, J. Math. Phys., 24, 795-806, 1983 · Zbl 0525.35022
[35] M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and Patterns, Springer-Verlag, Berlin, 2003. · Zbl 1038.37001
[36] N. Laskin, Fractional quantum mechanics, World Scientific, Singapore, 2018, p. 360. · Zbl 1425.81007
[37] Li, C.; Zhang, J., Lie symmetry analysis and exact solutions of generalized fractional Zakharov-Kuznetsov equations, Symmetry, 11, 601, 2019 · Zbl 1425.35216
[38] Ma, WX, Conservation laws by symmetries and adjoint symmetries, Discrete and Continuous Dynamical Systems-Series S, 11, 707-721, 2018 · Zbl 1386.70041
[39] Ma, WX; Liu, Y., Invariant subspaces and exact solutions of a class of dispersive evolution equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3795-3801, 2012 · Zbl 1250.35057
[40] Ma, WX; Mousa, MM; Ali, MR, Application of a new hybrid method for solving singular fractional Lane-Emden-type equations in astrophysics, Mod. Phys. Lett. B, 34, 2050049, 2020
[41] Maier, RS, The integration of three-dimensional Lotka-Volterra systems, Proc. R. Soc. A, 469, 20120693, 2013 · Zbl 1371.34003
[42] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: F. Mainardi (ed.), Fractals and fractional calculus in continuum mechanics, International Centre for Mechanical Sciences, Springer-Verlag, New York, 1997, pp. 291-348. · Zbl 0917.73004
[43] A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008. · Zbl 1151.33001
[44] Momani, S.; Odibat, Z., Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355, 271-279, 2006 · Zbl 1378.76084
[45] Momani, S.; Odibat, Z., Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, 365, 345-350, 2007 · Zbl 1203.65212
[46] Nass, AM, Symmetry analysis of space-time fractional Poisson equation with a delay, Quaestiones Mathematicae, 42, 1221-1235, 2019 · Zbl 1428.35017
[47] Nass, AM, Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay, Appl. Math. Comput., 347, 370-380, 2019 · Zbl 1428.34117
[48] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Heidelberg, 1986. · Zbl 0588.22001
[49] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, p. 432. · Zbl 0485.58002
[50] I. Podlubny, Fractional Differential Equations, Acadmic Press, New York, 1999. · Zbl 0924.34008
[51] Prakash, P., New exact solutions of generalized convection-reaction-diffusion equation, Eur. Phys. J. Plus, 134, 261, 2019
[52] Prakash, P., Invariant subspaces and exact solutions for some types of scalar and coupled time-space fractional diffusion equations, Pramana - J. Phys, 94, 103, 2020
[53] Prakash, P.; Choudhary, S.; Daftardar-Gejji, V., Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay, Eur. Phys. J. Plus, 135, 490, 2020
[54] Prakash, P.; Sahadevan, R., Lie symmetry analysis and exact solution of certain fractional ordinary differential equations, Nonlinear Dyn., 89, 305-319, 2017 · Zbl 1374.34016
[55] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 1326-1336, 2010 · Zbl 1189.65151
[56] Sadat, R.; Kaseem, MM; Ma, WX, Families of analytic solutions for (2+1) model in unbounded domain via optimal Lie vectors with integrating factors, Mod. Phys. Lett. B, 33, 1950229, 2019
[57] Sahadevan, R.; Prakash, P., Exact solution of certain time fractional nonlinear partial differential equations, Nonlinear Dyn., 85, 659-673, 2016 · Zbl 1349.35406
[58] Sahadevan, R.; Prakash, P., Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simulat., 42, 158-177, 2017 · Zbl 1473.35636
[59] Sahadevan, R.; Bakkyaraj, T., Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl., 393, 341-347, 2012 · Zbl 1245.35142
[60] Sahadevan, R.; Prakash, P., On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations, Chaos Solitons Fractals, 104, 107-120, 2017 · Zbl 1380.35161
[61] Sahadevan, R.; Prakash, P., Lie symmetry analysis and conservation laws of certain time fractional partial differential equations, Int. J. Dynamical Systems and Differential Equations, 9, 44-64, 2019 · Zbl 1428.35671
[62] Senthilvelan, M.; Chandrasekar, VK; Mohanasubha, R., Symmetries of nonlinear ordinary differential equations: the modified Emden equation as a case study, Pramana - J. Phys., 85, 755-787, 2015
[63] Silva, MF; Machado, JAT; Lopes, AM, Fractional order control of a hexapod robot, Nonlinear Dyn., 38, 417-433, 2004 · Zbl 1096.70004
[64] Tarasov, VE, Fractional hydrodynamic equations for fractal media, Ann. Phys., 318, 286-307, 2005 · Zbl 1071.76002
[65] Tian, J.; Yu, Y.; Wang, H., Stability and bifurcation of two kinds of three-dimensional fractional Lotka-Volterra systems, Math. Prob. Eng, 2014, 695871, 2014 · Zbl 1407.34016
[66] Wang, ZH; Wang, X., General solution of the Bagley-Torvik equation with fractional-order derivative, Commun. Nonlinear Sci. Numer. Simulat., 15, 1279-1285, 2010 · Zbl 1221.34020
[67] Wulfman, CE; Wybourne, BG, The Lie group of Newton’s and Lagrange’s equations for the harmonic oscillator, J. Phys. A: Math. Gen., 9, 507-518, 1976 · Zbl 0321.34034
[68] Yaşar, E., The (G′ /G, 1/G)-expansion method for solving nonlinear space-time fractional differential equations, Pramana, J. Phys, 87, 17, 2016
[69] Yaşar, E.; Yıldırım, Y.; Yaşar, E., New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method, Results Phys., 9, 1666-1672, 2018
[70] Yaşar, E.; Yıldırım, Y.; Khalique, CM, Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada-Koter-a-Ito equation, Results Phys., 6, 322-328, 2016
[71] Ye, Y.; Ma, WX; Shen, S.; Zhang, D., A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions, J. Nonlinear Math. Phys., 21, 132-148, 2014 · Zbl 1420.35072
[72] Zaitsev, NA; Matyushkin, IV; Shamonov, DV, Numerical solution of Thomas-Fermi equation for the centrally symmetric atom, Russ. Microelectron., 33, 303-309, 2004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.