×

Lie symmetry analysis and exact solutions of generalized fractional Zakharov-Kuznetsov equations. (English) Zbl 1425.35216

Summary: This paper considers the Lie symmetry analysis of a class of fractional Zakharov-Kuznetsov equations. We systematically show the procedure to obtain the Lie point symmetries for the equation. Accordingly, we study the vector fields of this equation. Meantime, the symmetry reductions of this equation are performed. Finally, by employing the obtained symmetry properties, we can get some new exact solutions to this fractional Zakharov-Kuznetsov equation.

MSC:

35R11 Fractional partial differential equations
35A30 Geometric theory, characteristics, transformations in context of PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35B06 Symmetries, invariants, etc. in context of PDEs
35C05 Solutions to PDEs in closed form

Software:

DESOLVII; ASP; FracSym

References:

[1] Zakharov, V.; Kuznetsov, E.A.; Three-dimensional solitons; Sov. Phys. JETP: 1974; Volume 29 ,594-597.
[2] Elwakil, S.A.; El-Shewy, E.K.; Abdelwahed, H.G.; Solution of the perturbed Zakharov-Kuznetsov (ZK) equation describing electron-acoustic solitary waves in a magnetized plasma; Chin. J. Phys.: 2011; Volume 49 ,732-744.
[3] Elboree, M.K.; Variational approach, soliton solutions and singular solitons for new coupled ZK system; Comput. Math. Appl.: 2015; Volume 70 ,934-941. · Zbl 1443.35123
[4] Faminskii, A.V.; An initial-boundary value problem in a strip for two-dimensional Zakharov-Kuznetsov- Burgers equation; Nonlinear Anal-Theor.: 2015; Volume 116 ,132-144. · Zbl 1309.35107
[5] Khan, K.; Akbar, M.A.; Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method; Ain Shams Eng. J.: 2013; Volume 4 ,903-909.
[6] Li, H.; Sun, J.; Qin, M.; Multi-Symplectic Method for the Zakharov-Kuznetsov Equation; Adv. Appl. Math. Mech.: 2015; Volume 7 ,58-73. · Zbl 1488.65727
[7] Mandal, P.K.; Ghosh, U.N.; Chaterjee, P.; Zakharov-Kuznestov-Burger Equation for Ion-Acoustic Waves in Cylindrical Geometry; Earth Moon Planets: 2015; Volume 115 ,45-58. · Zbl 1327.85007
[8] Molinet, L.; Pilod, D.; Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications; Annales de l’Institut Henri Poincaré (C) Non Linear Anal.: 2015; Volume 32 ,347-371. · Zbl 1320.35106
[9] Sabetkar, A.; Dorranian, D.; Role of superthermality on dust acoustic structures in the frame of a modified Zakharov-Kuznetsov equation in magnetized dusty plasma; Phys. Scr.: 2015; Volume 90 ,035603.
[10] Yin, J.Y.; New infinite sequence complexion soliton-like solutions of (2+1)-dimensional Zakharov-Kuznetsov modified equal width equation; Acta Phys. Sin.-Chin. Ed.: 2014; Volume 63 ,230202.
[11] Yu, J.; Wang, D.-S.; Sun, Y.; Wu, S.; Modified method of simplest equation for obtaining exact solutions of the Zakharov-Kuznetsov equation, the modified Zakharov-Kuznetsov equation, and their generalized forms; Nonlinear Dyn.: 2016; Volume 85 ,2449-2465. · Zbl 1349.35053
[12] Blaha, R.; Laedke, E.W.; Spatschek, K.H.; Collapsing states of generalized Korteweg-de Vries equations; Physica D: 1989; Volume 40 ,249-264. · Zbl 0701.35133
[13] Wazwaz, A.-M.; Special types of the nonlinear dispersive Zakharov-Kuznetsov equation with compactons, solitons, and periodic solutions; Int. J. Comput. Math.: 2004; Volume 81 ,1107-1119. · Zbl 1059.35131
[14] Biazar, J.; Badpeima, F.; Azimi, F.; Application of the homotopy perturbation method to Zakharov-Kuznetsov equations; Comput. Math. Appl.: 2009; Volume 58 ,2391-2394. · Zbl 1189.65244
[15] Huang, D.-J.; Ivanova, N.; Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations; J. Differ. Equ.: 2016; Volume 260 ,2354-2382. · Zbl 1333.35237
[16] Kumar, D.; Singh, J.; Kumar, S.; Numerical computation of nonlinear fractional Zakharov-Kuznetsov equation arising in ion-acoustic waves; J. Egypt. Math. Soc.: 2014; Volume 22 ,373-378. · Zbl 06363304
[17] Momani, S.; Odibat, Z.; Modifed homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order; Chaos Soliton Fract.: 2008; Volume 36 ,167-174. · Zbl 1152.34311
[18] Turut, V.; Güzel, N.; On solving Partial Differential Equations of Fractional Order by Using the Variational Iteration Method and Multivariate Padé; Eur. J. Pure Appl. Math.: 2013; Volume 6 ,147-171. · Zbl 1413.65401
[19] Kumar, S.; Kumar, D.; Fractional modelling for BBM-Burger equation by using new homotopy analysis transform method; J. Assoc. Arab Univ. Basic Appl. Sci.: 2014; Volume 16 ,16-20.
[20] Pandir, Y.; Gurefe, Y.; New exact solutions of the generalized fractional Zakharov-Kuznetsov equations; Life Sci. J.: 2013; Volume 10 ,2701-2705.
[21] Liu, H.; Yan, F.; Xu, C.; Lie symmetry analysis and some exact solutions for the Zakharov-Kuznetsov (ZK) equation and modified ZK equation; Far East J. Appl. Math.: 2010; Volume 42 ,81-112. · Zbl 1372.35259
[22] Adem, K.R.; Khalique, C.M.; Exact solutions and conservation laws of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity; Nonlinear Anal.-Real World Appl.: 2012; Volume 13 ,1692-1702. · Zbl 1253.35143
[23] Ali, M.N.; Seadawy, A.R.; Husnine, S.M.; Lie point symmetries, conservation laws and exact solutions of (1+n)-dimensional modified Zakharov-Kuznetsov equation describing the waves in plasma physics; Pramana: 2018; Volume 91 .
[24] Yan, Z.; Liu, X.; Symmetry and similarity solutions of variable coefficients generalized Zakharov-Kuznetsov equation; Appl. Math. Comput.: 2006; Volume 180 ,288-294. · Zbl 1109.35101
[25] Sahoo, S.; Garai, G.; Ray, S.S.; Lie symmetry analysis for similarity reduction and exact solutions of modified KdV-Zakharov-Kuznetsov equation; Nonlinear Dynam.: 2017; Volume 87 ,1995-2000. · Zbl 1384.37086
[26] Adem, A.R.; Muatjetjeja, B.; Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation; Appl. Math. Lett.: 2015; Volume 48 ,109-117. · Zbl 1326.35014
[27] Nadjafikhah, M.; Ahangari, F.; Symmetry analysis and similarity reduction of the Korteweg-de Vries- Zakharov-Kuznetsov equation; Asian Eur. J. Math.: 2012; Volume 5 ,1250006. · Zbl 1247.35134
[28] Recio, E.; Anco, S.C.; Conservation laws and symmetries of radial generalized nonlinear p-Laplacian evolution equations; J. Math. Anal. Appl.: 2017; Volume 452 ,1229-1261. · Zbl 1377.35183
[29] Olver, P.; ; Applications of Lie Groups to Differential Equations: New York, NY, USA 1986; . · Zbl 0588.22001
[30] Ibragimov, N.; ; Elementary Lie Group Analysis and Ordinary Differential Equations: Chichester, UK 1999; . · Zbl 1047.34001
[31] Ibragimov, N.K.; Ibragimov, R.N.; ; Applications of Lie Group Analysis in Geophysical Fluid Dynamics: Beijing, China 2011; . · Zbl 1240.76001
[32] Leo, R.A.; Sicuro, G.; Tempesta, P.; A general theory of Lie symmetries for fractional differential equations; arXiv: 2014; . · Zbl 1298.35240
[33] Sahoo, S.; Ray, S.S.; Analysis of Lie symmetries with conservation laws for the (3+1)-dimensional time-fractional mKdV-ZK equation in ion-acoustic waves; Nonlinear Dyn.: 2017; Volume 90 ,1105-1113. · Zbl 1390.37115
[34] Chen, C.; Jiang, Y.L.; Lie group analysis method for two classes of fractional partial differential equations; Commun. Nonlinear SCI: 2015; Volume 26 ,24-35. · Zbl 1440.35340
[35] Huang, Q.; Zhdanov, R.; Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative; Physica A: 2014; Volume 409 ,110-118. · Zbl 1395.35194
[36] Wang, G.; Liu, X.; Zhang, Y.; Lie symmetry analysis to the time fractional generalized fifth-order KdV equation; Commun. Nonlinear SCI: 2013; Volume 18 ,2321-2326. · Zbl 1304.35624
[37] Hashemi, M.S.; Baleanu, D.; On the time fractional generalized fisher equation: Group similarities and analytical solutions; Commun. Theor. Phys.: 2016; Volume 65 ,11-16. · Zbl 1331.35369
[38] Baleanua, D.; Inc, M.; Yusuf, A.; Aliyu, A.I.; Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation; Nonlinear Anal.-Model. Control: 2017; Volume 22 ,861-876. · Zbl 1418.35013
[39] Kiryakova, V.; ; Generalized Fractional Calculus and Applications: Harlow, UK 1994; . · Zbl 0882.26003
[40] Jefferson, G.F.; Carminati, J.; FracSym: Automated symbolic computation of Lie symmetries of fractional differential equations; Comput. Phys. Commun.: 2014; Volume 185 ,430-441. · Zbl 1344.35003
[41] Jefferson, G.F.; Carminati, J.; ASP: Automated symbolic computation of approximate symmetries of differential equations; Comput. Phys. Commun.: 2013; Volume 184 ,1045-1063. · Zbl 1306.65267
[42] Vu, K.T.; Jefferson, G.F.; Carminati, J.; Finding generalised symmetries of differential equations using the MAPLE package DESOLVII; Comput. Phys. Commun.: 2012; Volume 183 ,1044-1054. · Zbl 1308.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.