×

Modified method of simplest equation for obtaining exact solutions of the Zakharov-Kuznetsov equation, the modified Zakharov-Kuznetsov equation, and their generalized forms. (English) Zbl 1349.35053

Summary: In this paper, we study the application of a version of the method of simplest equation for obtaining exact traveling wave solutions of the Zakharov-Kuznetsov equation, the modified Zakharov-Kuznetsov equation, and their generalized forms. The Duffing-type equation is used as simplest auxiliary equation. In the meantime, the proposed method is proved to be a powerful mathematical tool for obtaining exact solutions of nonlinear partial differential equations in mathematical physics.

MSC:

35C07 Traveling wave solutions
35A24 Methods of ordinary differential equations applied to PDEs
Full Text: DOI

References:

[1] Ma, W.X., Gu, X., Gao, L.: A note on exact solutions to linear differential equations by the matrix exponential. Adv. Appl. Math. Mech. 1, 573-580 (2009) · Zbl 1262.15034
[2] Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Non-Linear Mech. 31, 329-338 (1996) · Zbl 0863.35106 · doi:10.1016/0020-7462(95)00064-X
[3] Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-deVries equation and generalized Camassa-Holm equation. Appl. Math. Comput. 219, 7480-7492 (2013) · Zbl 1292.35071
[4] Huang, Y.: Exact multi-wave solutions for the KdV equation. Nonlinear Dyn. 77, 437-444 (2014) · Zbl 1314.35141 · doi:10.1007/s11071-014-1307-3
[5] Vitanov, N.K.: Solitary wave solutions for nonlinear partial differential equations that contain monomials of odd and even grades with respect to participating derivatives. Appl. Math. Comput. 247, 213-217 (2014) · Zbl 1338.35397
[6] Wang, D.S., Li, H.B.: Symbolic computation and non-travelling wave solutions of \[(2+1)(2+1)\]-dimensional nonlinear evolution equations. Chaos Solitons Fract. 38, 383-390 (2008) · Zbl 1146.35407 · doi:10.1016/j.chaos.2007.07.062
[7] Wang, D.S., Hu, X.H., Hu, J.P., Liu, W.M.: Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity. Phys. Rev. A 81, 025604 (2010) · doi:10.1103/PhysRevA.81.025604
[8] Wang, D.S., Zeng, X., Ma, Y.Q.: Exact vortex solitons in a quasi-two-dimensional Bose-Einstein condensate with spatially inhomogeneous cubic-quintic nonlinearity. Phys. Lett. A 376, 3067-3070 (2012) · doi:10.1016/j.physleta.2012.08.034
[9] Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91(3), 033202 (2015) · doi:10.1103/PhysRevE.91.033202
[10] Xu, T., Li, M., Li, Lu: Anti-dark and Mexican-hat solitons in the Sasa-Satsuma equation on the continuous wave background. Europhys. Lett. 109(3), 30006 (2015) · doi:10.1209/0295-5075/109/30006
[11] Tian, S.F., Zhang, T.T., Ma, P.L., Zhang, X.Y.: Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach. J. Nonlinear Math. Phys. 22(2), 180-193 (2015) · Zbl 1420.35297 · doi:10.1080/14029251.2015.1023562
[12] Lu, X.: Soliton behavior for a generalized mixed nonlinear Schrödinger model with N-fold Darboux transformation. Chaos 23, 033137 (2013) · Zbl 1323.35163 · doi:10.1063/1.4821132
[13] Ma, W.X., Lee, J.-H.: A transformed rational function method and exact solutions to the \[3+13+1\] dimensional Jimbo-Miwa equation. Chaos Solitons Fract. 42, 1356-1363 (2009) · Zbl 1198.35231 · doi:10.1016/j.chaos.2009.03.043
[14] Ma, W.X., Liu, Y.P.: Invariant subspaces and exact solutions of a class of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3795-3801 (2012) · Zbl 1250.35057 · doi:10.1016/j.cnsns.2012.02.024
[15] Wang, M.L.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 199, 169-172 (1995) · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[16] Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67-75 (1996) · Zbl 1125.35401 · doi:10.1016/0375-9601(96)00283-6
[17] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[18] Zhou, Y.B., Wang, M.L., Wang, Y.M.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31-36 (2003) · Zbl 1008.35061 · doi:10.1016/S0375-9601(02)01775-9
[19] Chen, L.L.: Formally variable separation approach and new exact solutions of generalized Hirota-Satsuma equations. Acta Phys. Sin. 48, 2149-2153 (1999) · Zbl 1202.35184
[20] Chen, Y., Li, Y.S.: The constraint of the Kadomtsev-Petviashvili equation and its special solutions. Phys. Lett. A 157, 22-26 (1991) · doi:10.1016/0375-9601(91)90403-U
[21] Lou, S.Y., Lu, J.Z.: Special solutions from the variable separation approach: the Davey-Stewartson equation. J. Phys. A 29, 4209-4215 (1996) · Zbl 0899.35101 · doi:10.1088/0305-4470/29/14/038
[22] Zeng, Y.B.: An approach to the deduction of the finite-dimensional integrability from the infinite-dimensional integrability. Phys. Lett. A 160, 541-547 (1991) · doi:10.1016/0375-9601(91)91065-L
[23] Conte, R., Musett, M.: Link between solitary waves and projective Riccati equations. J. Phys. A 25, 5609-5623 (1992) · Zbl 0782.35065 · doi:10.1088/0305-4470/25/21/019
[24] Zedan, H.A., Alaidarous, E., Shapll, S.: Exact solutions for a perturbed nonlinear Schrödinger equation by using Bäcklund transformations. Nonlinear Dyn 74, 1153 (2013) · Zbl 1284.35410 · doi:10.1007/s11071-013-1109-z
[25] Liu, N.: Bäcklund transformation and multi-soliton solutions for the \[(3+1)(3+1)\]-dimensional BKP equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 82, 311-318 (2015) · Zbl 1348.37105 · doi:10.1007/s11071-015-2159-1
[26] Feng, X.: Exploratory approach to explicit solution of nonlinear evolution equations. Int. J. Theor. Phys. 39, 207-222 (2000) · Zbl 0962.35033 · doi:10.1023/A:1003615705115
[27] Fu, Z.T., Liu, S.D., Liu, S.K., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290, 72-76 (2001) · Zbl 0977.35094 · doi:10.1016/S0375-9601(01)00644-2
[28] Fu, Z.T., Liu, S.D., Liu, S.K.: New kinds of solutions to Gardner equation. Chaos Solitons Fract. 20, 301-309 (2004) · Zbl 1046.35097 · doi:10.1016/S0960-0779(03)00383-7
[29] Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010) · Zbl 1219.35209 · doi:10.1088/0031-8949/82/06/065003
[30] Li, J.B., Chen, F.J.: Exact traveling wave solutions and bifurcations of the dual Ito equation. Nonlinear Dyn. 82, 1537-1550 (2015) · Zbl 1348.35047 · doi:10.1007/s11071-015-2259-y
[31] Pereira, P.J.S., Lopes, N.D., Trabucho, L.: Soliton-type and other travelling wave solutions for an improved class of nonlinear sixth-order Boussinesq equations. Nonlinear Dyn. 82, 783-818 (2015) · Zbl 1348.35050 · doi:10.1007/s11071-015-2196-9
[32] Li, S.Y., Liu, Z.R.: Kink-like wave and compacton-like wave solutions for generalized KdV equation. Nonlinear Dyn. 79, 903-918 (2015) · Zbl 1345.37072 · doi:10.1007/s11071-014-1710-9
[33] Gupta, R.K., Kumar, V., Jiwari, R.: Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dyn. 79, 455-464 (2014) · Zbl 1331.35022 · doi:10.1007/s11071-014-1678-5
[34] Kudryashov, N.A.: Exact soliton solutions of the generalized evolution equation of wave dynamics. J. Appl. Math. Mech. 52, 361-365 (1988) · doi:10.1016/0021-8928(88)90090-1
[35] Kudryashov, N.A.: On types of nonlinear non integrable differential equations with exact solutions. Phys. Lett. A 155, 269-275 (1991) · doi:10.1016/0375-9601(91)90481-M
[36] Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248-2253 (2012) · Zbl 1250.35055 · doi:10.1016/j.cnsns.2011.10.016
[37] Vitanov, N.K., Dimitrova, Z.I., Vitanov, K.N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Appl. Math. Comput. 269, 363-378 (2015) · Zbl 1410.35187
[38] Hassan a, M.M., Abdel-Razek b, M.A., Shoreh c, A.A.-H.: Explicit exact solutions of some nonlinear evolution equations with their geometric interpretations. Appl. Math. Comput. 251, 243-252 (2015) · Zbl 1328.35200
[39] Ryabov, P.N., Sinelshchikov, D.I., Kochanov, M.B.: Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Appl. Math. Comput. 218, 3965-3972 (2011) · Zbl 1246.35015
[40] Kabir, M.M., Khajeh, A., Aghdam, A,E.A., YousefiKoma, A.: Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations. Math. Methods Appl. Sci. 34, 213-219 (2011) · Zbl 1206.35063 · doi:10.1002/mma.1349
[41] Vitanov, N.K., Dimitrova, I.Z.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model partial differential equations from ecology and population dynamics. Commun. Nonlinear Sci. Numer. Simul. 15, 2836-2845 (2010) · Zbl 1222.35201 · doi:10.1016/j.cnsns.2009.11.029
[42] Sirendaoreji: Auxiliary equation method and new solutions of Klein-Gordon equations. Chaos Solitons Fract. 31, 943-950 (2007) · Zbl 1143.35341
[43] Vitanov, N.K.: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of partial differential equations with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2050-2060 (2010) · Zbl 1222.35062 · doi:10.1016/j.cnsns.2009.08.011
[44] Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Modified method of simplest equation and its application to nonlinear partial differential equations. Appl. Math. Comput. 216, 2587-2595 (2010) · Zbl 1195.35272
[45] Biswas, A.: 1-soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients. Phys. Lett. A 373, 2931-2934 (2009) · Zbl 1233.35170 · doi:10.1016/j.physleta.2009.06.029
[46] Biswas, A., Zerrad, E., Gwanmesia, J., Khouri, R.: 1-soliton solution of the generalized Zakharov equation in plasmas by he’s variational principle. Appl. Math. Comput. 215, 4462-4466 (2010) · Zbl 1185.35208
[47] Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput 247, 30C46 (2014) · Zbl 1339.65188
[48] Biswas, A., Bhrawy, A.H., Abdelkawy, M.A.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433-442 (2014)
[49] Bhrawy, A.H., Abdelkawy, M.A., Biswas, Anjan: Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics. Indian J. Phys. 87, 1125-1131 (2013) · doi:10.1007/s12648-013-0338-9
[50] Bhrawy, A.H.: A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Appl. Math. Comput. 222, 255-264 (2013) · Zbl 1329.65234
[51] Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x · Zbl 1335.65083 · doi:10.1007/s10092-014-0132-x
[52] Bhrawy, A.H.: A jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, numerical algorithms. Numer. Algorithms. doi:10.1007/s11075-015-0087-2 · Zbl 1348.65143
[53] Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multidimensional time fractional schrodinger’s equation. Nonlinear Dyn. doi:10.1007/s11071-015-2588-x · Zbl 1338.35397
[54] Bhrawy, A.H.: A new spectral algorithm for a time-space fractional partial differential equations with subdiffusion and superdiffusion. Proc. Rom. Acad. A 17, 39-46 (2016)
[55] Zakeri, G.A., Yomba, E.: Exact solutions of a generalized autonomous Duffing-type equation. Appl. Math. Mod. 39, 4607-4616 (2015) · Zbl 1170.82407 · doi:10.1016/j.apm.2015.04.027
[56] Wang, H., Chung, K.W.: Analytical solutions of a generalized Duffing-harmonic oscillator by a nonlinear time transformation method. Phys. Lett. A 376, 1118-1124 (2012) · Zbl 1255.34037 · doi:10.1016/j.physleta.2012.02.022
[57] Marinca, V., Herisanu, N.: Explicit and exact solutions to cubic Duffing and double-well Duffing equations. Math. Comput. Model. 53, 604-609 (2011) · Zbl 1217.34004 · doi:10.1016/j.mcm.2010.09.011
[58] Zakharov, V.E., Kuznetsov, E.A.: On three-dimensional solitons. Sov. Phys. 39, 285-288 (1974)
[59] Schamel, H.: A modified Korteweg-de-Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377-387 (1973) · doi:10.1017/S002237780000756X
[60] Monro, S., Parkes, E.J.: Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 64, 411-426 (2000) · doi:10.1017/S0022377800008771
[61] Monro, S., Parkes, E.J.: The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62, 305-317 (1999) · doi:10.1017/S0022377899007874
[62] Ma, H.C., Yu, Y.D., Ge, D.J.: the auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation. Comput. Math. Appl. 58, 2523-2527 (2009) · Zbl 1189.65252 · doi:10.1016/j.camwa.2009.03.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.