×

Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations. (English) Zbl 1473.35636

Summary: We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated.

MSC:

35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Podlubny, I., Fractional differential equations (1999), Acadmic Press: Acadmic Press New York · Zbl 0918.34010
[2] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), John Wiley and Sons: John Wiley and Sons New York · Zbl 0789.26002
[3] Samko, S.; Kilbas, A. A.; Marichev, O., Fractional integrals and derivatives: theory and applications (1993), Gordon and Breach science: Gordon and Breach science Yverdon, Switzerland · Zbl 0818.26003
[4] Oldham, K. B.; Spanier, J., The fractional calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[5] Kilbas, A. A.; Trujillo, J. J.; Srivastava, H. M., Theory and applications of fractional differential equations (2006), Elseiver: Elseiver Amsterdam · Zbl 1092.45003
[6] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[7] He, J. H., Some applications of nonlinear fractional differential equations and their approximations, Bull Sci Technol, 15, 86-90 (1999)
[9] Daftardar-Gejji, V.; Jafari, H., Adomian decomposition: a tool for solving a system of fractional differential equations, J Math Anal Appl, 301, 508-518 (2005) · Zbl 1061.34003
[10] Bakkyaraj, T.; Sahadevan, R., An approximate solution to some classes of fractional nonlinear partial differential-difference equation using adomian decomposition method, J Fract Calc Appl, 5, 37-52 (2014) · Zbl 1499.65593
[11] Eslami, M.; Vajargah, B. F.; Mirzazadeh, M.; Biswas, A., Applications of first integral method to fractional partial differential equations, Indian J Phy, 88, 177-184 (2014)
[12] Bakkyaraj, T.; Sahadevan, R., On solutions of two coupled fractional time derivative hirota equations, Nonlinear Dyn, 77, 1309-1322 (2014)
[13] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer Methods Partial Differential Eq, 26, 448-479 (2010) · Zbl 1185.65187
[14] Dehghan, M.; Manafiana, J.; Saadatmandib, A., The solution of the linear fractional partial differential equations using the homotopy analysis method, Z Naturforsch, 65, 935-949 (2010)
[15] Sahadevan, R.; Bakkyaraj, T., Invariant analysis of time fractional generalized burgers and korteweg-de vries equations, J Math Anal Appl, 2, 341-347 (2012) · Zbl 1245.35142
[16] Ouhadan, A.; Kinani, E. H.E., Lie symmetry analysis of some time fractional partial differential equations, International J Modern Phy Conf Ser, 38 (2015)
[17] Baleanu, D.; Muslih, S. I.; Tas, K., Fractional hamiltonian analysis of higher order derivatives systems, J Math Phys, 47, 103503 (2006) · Zbl 1112.81074
[18] Baleanu, D.; Mustafa, O. G.; Agarwal, R. P., On \(l^p\)-solutions for a class of sequential fractional differential equations, Appl Math Comput, 218, 20742081 (2011) · Zbl 1235.34008
[19] Baleanu, D.; Mustafa, O. G.; Agarwal, R. P., On the solution set for a class of sequential fractional differential equations, J Phys A Math Theor, 43 (2010) · Zbl 1216.34004
[20] Mohebbi, A.; Abbaszadeh, M.; Dehghan, M., A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J Comput Phys, 240, 36-48 (2013) · Zbl 1287.65064
[21] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method, J Comput Appl Math, 280, 14-36 (2015) · Zbl 1305.65211
[22] Dehghan, M.; Safarpoor, M.; Abbaszadeh, M., Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J Comput Appl Math, 290, 174-195 (2015) · Zbl 1321.65129
[23] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation, Appl Math Model (2015)
[24] Parvizi, M.; Eslahchi, M. R.; Dehghan, M., Numerical solution of fractional advection-diffusion equation with a nonlinear source term, Numer Algor, 68, 601-629 (2015) · Zbl 1319.35290
[25] Galaktionov, V. A.; Svirshchevskii, S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics (2007), Chapman and Hall/CRC: Chapman and Hall/CRC London · Zbl 1153.35001
[26] Gazizov, R. K.; Kasatkin, A. A., Construction of exact solutions for fractional order differential equations by invariant subspace method, Comput Math Appl, 66, 576-584 (2013) · Zbl 1348.34012
[27] Sahadevan, R.; Bakkyaraj, T., Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations, Fract Calc Appl Anal, 18, 146-162 (2015) · Zbl 1499.35682
[28] Harris, P. A.; Garra, R., Analytic solution of nonlinear fractional burgers-type equation by invariant subspace method, Nonlinear Stud, 20, 4, 471-481 (2013) · Zbl 1305.35151
[29] Harris, P. A.; Garra, R., Nonlinear time-fractional dispersive equations, Commun Appl Indus Math, 6, 1 (2014) · Zbl 1329.35331
[31] Ma, W. X., A refined invariant subspace method and applications to evolution equations, Sci china Math, 55, 1769-1778 (2012) · Zbl 1263.37071
[32] Qu, C.z.; Zhu, C. R., Classification of coupled systems with two-component nonlinear diffusion equations by the invariance subspace method, J Phys A Math Theor, 42 (2009) · Zbl 1191.35088
[33] Shen, S. F.; Qu, C. Z.; Jin, Y. Y.; Ji, L. N., Maximal dimension of invariant subspaces to systems of nonlinear evolution equations, Chin Ann Math Ser B, 33, 161-178 (2012)
[34] Zhu, C. R.; Qu, C. Z., Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators, J Math Phys, 52, 043507 (2011) · Zbl 1316.34092
[35] Song, J.; Shen, S.; Jin, Y.; Zhang, J., New maximal dimension of invariant subspaces to coupled systems with two-component equations, Commun Nonlinear Sci Numer Simulat, 18, 2984-2992 (2013) · Zbl 1333.35241
[36] Ma, W. X.; Liu, Y., Invariant subspaces and exact solutions of a class of dispersive evolution equations, Commun Nonlinear Sci Numer Simulat, 17, 3795-3801 (2012) · Zbl 1250.35057
[37] Galaktionov, V. A., Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proc Roy Soc Endin Sect A, 125, 225-246 (1995) · Zbl 0824.35128
[38] Svirshchevskii, S. R., Invariant linear spaces and exact solutions of nonlinear evolution equations, J Nonlinear Math Phys, 3, 164-169 (1996) · Zbl 1044.35511
[39] Diethelm, K., The analysis of fractional differential equations, (2010), Springer: Springer Berlin · Zbl 1215.34001
[40] Debnath, L.; Bhatta, D., Integral transforms and their applications (2009), Chapman and Hall/CRC: Chapman and Hall/CRC London
[41] Mathai, A. M.; Haubold, H. J., Special functions for applied scientists (2010), Springer: Springer New York · Zbl 1151.33001
[42] Sakar, M. G.; Erdogan, F., The homotopy analysis method for solving the time-fractional fornbergwhitham equation and comparison with adomians decomposition method, Appl Math Modelling, 37, 8876-8885 (2013) · Zbl 1427.65323
[43] Gupta, P. K.; Singh, M., Homotopy perturbation method for fractional fornberg-whitham equation, Comput Math Appl, 61, 250-254 (2011) · Zbl 1211.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.