×

Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative. (English) Zbl 1345.34003

Summary: A systematic method is given to derive Lie point symmetries of nonlinear fractional ordinary differential equations and illustrate its applicability through the fractional Riccati equation and nonlinear fractional ordinary differential equation of Liénard type with Riemann-Liouville fractional derivative. Using the obtained Lie point symmetries, we construct their exact solutions wherever possible.

MSC:

34A08 Fractional ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Bakkyaraj, T., Sahadevan, R.: An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method. J. Fract. Calc. Appl. 5(1), 37-52 (2014) · Zbl 1499.65593
[2] Bakkyaraj, T., Sahadevan, R.: On solutions of two coupled fractional time derivative Hirota equations. Nonlinear Dyn. 77, 1309-1322 (2014) · doi:10.1007/s11071-014-1380-7
[3] Bluman, G.W., Anco, S.: Symmetry and Integration Methods for Differential Equations. Springer, Heidelburg (2002) · Zbl 1013.34004
[4] Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81-97 (1998) · Zbl 0932.58038 · doi:10.1006/jmaa.1998.6078
[5] Djordjevic, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations. J. Comput. Appl. Math. 212, 701-714 (2008) · Zbl 1157.35470 · doi:10.1016/j.cam.2007.12.013
[6] Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S. Yu.: Continuous transformation groups of fractional differential equations. Vestnik USATU. 9 3(21), 125-135 (2007). (in Russian) · Zbl 0525.35022
[7] Gazizov, R.K., Kasatkin, A.A.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009) · doi:10.1088/0031-8949/2009/T136/014016
[8] Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S. Yu.: Group invariant solutions of fractional differential equations. In: Machado, J.A.T., Luo, A.C.J., Barbosa, R.S., Silva, M.F., Figueiredo, L.B. (eds.) Nonlinear Science and Complexity, pp. 51-58. Springer, Heidelburg (2011) · Zbl 1217.37066
[9] Gorenflo, R., Luchko, Y., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, 175-191 (2000) · Zbl 0973.35012 · doi:10.1016/S0377-0427(00)00288-0
[10] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002
[11] Hydon, P.E.: Symmetry Methods for Differential Equations. Cambridge University Press, Cambridge (2000) · Zbl 0951.34001 · doi:10.1017/CBO9780511623967
[12] Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations- Symmetries, Exact Solutions and Conservation Laws, vol. 1. CRC Press, New York (1994) · Zbl 0864.35001
[13] Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, England (1999) · Zbl 1047.34001
[14] Kasatkin, A.A.: Symmetry properties for systems of two ordinary fractional differential equations. Ufa Math. J. 4(1), 65-75 (2012)
[15] Kasatkin, A.A.: Symmetries and exact solutions of equations with fractional order derivative of Riemann-Liouville. Ph.D. Dissertation, Ufa State Aviation Technical University, Ufa (2013). (in Russian) · Zbl 0973.35012
[16] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006) · Zbl 1092.45003
[17] Lakshmanan, M., Kaliappan, P.: Lie transformations, nonlinear evolution equations, and Painleve forms. J. Math. Phys. 24, 795-806 (1983) · Zbl 0525.35022 · doi:10.1063/1.525752
[18] Luchko, Y., Gorenflo, R.: Scale invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1, 63-78 (1998) · Zbl 0940.45001
[19] Mathai, A.M., Saxena, R.K., Haubold, H.J.: A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations. Astrophys. Space Sci. 305, 283-288 (2006) · Zbl 1105.35301 · doi:10.1007/s10509-006-9188-7
[20] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[21] Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Heidelberg (1986) · Zbl 0588.22001
[22] Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) · Zbl 0485.58002
[23] Pandey, S.N., Bindu, P.S., Senthilvelan, M., Lakshmanan, M.: A group theoretical identification of integrable equations in the Liénard-type equation \[\ddot{x}+f(x)\dot{x}+g(x)=0\] x¨+f(x)x˙+g(x)=0. II. equations having maximal Lie point symmetries. J. Math. Phys. 50, 102701 (2009) · Zbl 1283.34036
[24] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[25] Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971) · Zbl 0221.45003
[26] Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalised Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 393, 341-347 (2012) · Zbl 1245.35142 · doi:10.1016/j.jmaa.2012.04.006
[27] Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Switzerland (1993) · Zbl 0818.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.