×

Exact solution of certain time fractional nonlinear partial differential equations. (English) Zbl 1349.35406

Summary: Given a time fractional nonlinear partial differential equation, we show how to derive its exact solution using invariant subspace method. This has been illustrated through time fractional diffusion convection equation, time fractional nonlinear dispersive Boussinesq equation, time fractional reaction diffusion equation of second order, time fractional thin-film equation, and time fractional quadratic wave equation. Also, we explicitly shown that time fractional nonlinear partial differential equations admit more than one invariant subspaces which in turn helps to derive more than one exact solution.

MSC:

35R11 Fractional partial differential equations
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Podlubny, I.: Fractional Differential Equations. Acadmic Press, New York (1999) · Zbl 0924.34008
[2] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[3] Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach science, Yverdon (1993) · Zbl 0818.26003
[4] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[5] Kilbas, A.A., Trujillo, J.J., Srivastava, H.M.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[6] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/9789812817747
[7] He, JH, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15, 86-90, (1999)
[8] Bhrawy, AH; Taha, TM; Machado, JAT, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn., 81, 1023-1052, (2015) · Zbl 1348.65106 · doi:10.1007/s11071-015-2087-0
[9] Bhrawy, AH; Zaky, MA, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80, 101-116, (2015) · Zbl 1345.65060 · doi:10.1007/s11071-014-1854-7
[10] Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms (2015). doi:10.1007/s11075-015-0087-2 · Zbl 1348.65143
[11] Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos, and Patterns. Springer, India (2003) · Zbl 1038.37001 · doi:10.1007/978-3-642-55688-3
[12] Daftardar-Gejji, V; Jafari, H, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301, 508-518, (2005) · Zbl 1061.34003 · doi:10.1016/j.jmaa.2004.07.039
[13] Bakkyaraj, T; Sahadevan, R, An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method, J. Fract. Calc. Appl., 5, 37-52, (2014) · Zbl 1499.65593
[14] Eslami, M; Vajargah, BF; Mirzazadeh, M; Biswas, A, Applications of first integral method to fractional partial differential equations, Indian J. Phys., 88, 177-184, (2014) · doi:10.1007/s12648-013-0401-6
[15] Bakkyaraj, T., Sahadevan, R.: Approximate analytical solution of two coupled time fractional nonlinear Schrodinger equations. Int. J. Appl. Comput. Math. 2, 113-135 (2016) · Zbl 1245.35142
[16] Bakkyaraj, T; Sahadevan, R, On solutions of two coupled fractional time derivative Hirota equations, Nonlinear Dyn., 77, 1309-1322, (2014) · doi:10.1007/s11071-014-1380-7
[17] Sahadevan, R; Bakkyaraj, T, Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl., 2, 341-347, (2012) · Zbl 1245.35142 · doi:10.1016/j.jmaa.2012.04.006
[18] Ouhadan, A., El Kinani, E.H.: Lie symmetry analysis of some time fractional partial differential equations. Int. J. Modern Phys. Conf. Ser. 38, 1560075(8p) (2015)
[19] Bakkyaraj, T; Sahadevan, R, Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville derivative, Nonlinear Dyn., 80, 447-455, (2015) · Zbl 1345.34003 · doi:10.1007/s11071-014-1881-4
[20] Bhrawy, AH; Alofi, AS, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 26, 25-31, (2013) · Zbl 1255.65147 · doi:10.1016/j.aml.2012.01.027
[21] Biswas, A; Bhrawy, AH; Abdelkawy, MA; Alshaery, AA; Hilal, EM, Symbolic computation of some nonlinear fractional differential equations, Rom. J. Phys., 59, 433-442, (2014)
[22] Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space and time fractional telegraph equation via Chebyshev tau approximation. J. Optim. Theory Appl. (2016) doi:10.1007/s10957-016-0863-8 · Zbl 1471.65157
[23] Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Efficient legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation. J. Vib. Cont. (2015). doi:10.1177/1077546314566835 · Zbl 1365.35201
[24] Bhrawy, A.H., Ezz-Eldien, S.S.: A New Legendre operational technique for delay fractional optimal control problems. Calcolo (2015). doi:10.1007/s10092-015-0160-1 · Zbl 1377.49032
[25] Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x · Zbl 1335.65083
[26] Bhrawy, A.H., Doha, E.H., Machado, J.A.T., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control (2016). doi:10.1002/asjc.1109 · Zbl 1341.49037
[27] Bhrawy, AH; Zaky, MA; Gorder, RA, A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation, Numer. Algorithms, 71, 151-180, (2016) · Zbl 1334.65166 · doi:10.1007/s11075-015-9990-9
[28] Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrdinger equations. Nonlinear Dyn. (2016). doi:10.1007/s11071-015-2588-x
[29] Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, London (2007) · Zbl 1153.35001
[30] Galaktionov, V.A.: Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 125, pp. 225-246 (1995) · Zbl 0824.35128
[31] Svirshchevskii, SR, Invariant linear spaces and exact solutions of nonlinear evolution equations, J. Nonlinear Math. Phys., 3, 164-169, (1996) · Zbl 1044.81612 · doi:10.2991/jnmp.1996.3.1-2.18
[32] Gazizov, RK; Kasatkin, AA, Construction of exact solutions for fractional order differential equations by invariant subspace method, Comput. Math. Appl., 66, 576-584, (2013) · Zbl 1348.34012 · doi:10.1016/j.camwa.2013.05.006
[33] Sahadevan, R; Bakkyaraj, T, Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations, Fract. Calc. Appl. Anal., 18, 146-162, (2015) · Zbl 1499.35682 · doi:10.1515/fca-2015-0010
[34] Harris, PA; Garra, R, Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method, Nonlinear Stud., 20, 471-481, (2013) · Zbl 1305.35151
[35] Harris, PA; Garra, R, Nonlinear time-fractional dispersive equations, Commun. Appl. Indus. Math., 6, 1, (2014) · Zbl 1329.35331
[36] Ouhadan, A., El Kinani, E.H.: Invariant subspace method and fractional modified Kuramoto-Sivashinsky equation. arXiv:1503.08789v1 (2015)
[37] Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010) · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[38] Debnath, L., Bhatta, D.: Integral Transforms and Their Applications, 2nd edn. Chapman and Hall/CRC, London (2009) · Zbl 1113.44001
[39] Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2010) · Zbl 1151.33001
[40] Sakar, M.G., Erdogan, F.: The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Appl. Math. Model. 37, 8876-8885 (2013) · Zbl 1427.65323
[41] Gupta, PK; Singh, M, Homotopy perturbation method for fractional fornberg-Whitham equation, Comput. Math. Appl., 61, 250-254, (2011) · Zbl 1211.65138 · doi:10.1016/j.camwa.2010.10.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.