×

Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities. (English) Zbl 1500.35269

Summary: In this paper, we investigate the following fractional Sobolev critical Nonlinear Schrödinger coupled systems: \[ \begin{cases} (-\Delta)^s u = \mu_1 u+|u|^{2^\ast_s-2}u + \eta_1|u|^{p-2}u + \gamma\alpha |u|^{\alpha -2}u|v|^{\beta } &\text{in }\mathbb{R}^N,\\ (-\Delta)^s v = \mu_2 v+|v|^{2^\ast_s-2}v + \eta_2|v|^{q-2}v + \gamma\beta |u|^\alpha|v|^{\beta -2}v &\text{in }\mathbb{R}^N,\\ \|u\|^2_{L^2} = m_1^2 \text{ and } \|v\|^2_{L^2} = m_2^2, \end{cases} \] where \((-\Delta)^s\) is the fractional Laplacian, \(N > 2s\), \(s\in (0, 1)\), \(\mu_1, \mu_2\in\mathbb{R}\) are unknown constants, which will appear as Lagrange multipliers, \(2^\ast_s\) is the fractional Sobolev critical index, \(\eta_1, \eta_2, \gamma, m_1, m_2 > 0\), \(\alpha>1, \beta > 1\), \(p, q, \alpha + \beta\in(2+4s/N, 2^\ast_s]\). Firstly, if \(p, q, \alpha +\beta <2^\ast_s\), we obtain the existence of positive normalized solution when \(\gamma\) is big enough. Secondly, if \(p=q=\alpha +\beta=2^\ast_s\), we show that nonexistence of positive normalized solution. The main ideas and methods of this paper are scaling transformation, classification discussion and concentration-compactness principle.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
35J50 Variational methods for elliptic systems
35J60 Nonlinear elliptic equations
35B33 Critical exponents in context of PDEs
35B09 Positive solutions to PDEs

References:

[1] Bagnato, VS; Frantzeskakis, DJ; Kevrekidis, PG; Malomed, BA; Mihalache, D., Bose-Einstein condensation: twenty years after, Rom. Rep. Phys., 67, 5-50 (2015)
[2] Esry, BD; Greene, CH; Burke, JP Jr; Bohn, JL, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597 (1997) · doi:10.1103/PhysRevLett.78.3594
[3] Frantzeskakis, DJ, Dark solitons in atomic Bose-Einstein condesates: from theory to experiments, J. Phys. A, 43, 21, 213001 (2010) · Zbl 1192.82033 · doi:10.1088/1751-8113/43/21/213001
[4] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[5] Chen, Z.; Zou, W., Existence and symmetry of positive ground states for a doubly critical Schrödinger system, Trans. Am. Math. Soc., 367, 3599-3646 (2015) · Zbl 1315.35091 · doi:10.1090/S0002-9947-2014-06237-5
[6] Chen, Z.; Zou, W., Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205, 2, 515-551 (2012) · Zbl 1256.35132 · doi:10.1007/s00205-012-0513-8
[7] Yin, X.; Zou, W., Positive least energy solutions for k-coupled critical systems involving fractional laplacian, Discret. Contin. Dyn. Syst. Ser. S, 14, 1995-2023 (2021) · Zbl 1480.35201
[8] Yang, T., On doubly critical coupled systems involving fractional Laplacian with partial singular weight, Math. Methods Appl. Sci., 44, 13448-13467 (2021) · Zbl 1479.35931 · doi:10.1002/mma.7637
[9] Zhen, M.; He, J.; Xu, H.; Yang, M., Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent, Bound. Value Probl., 2018, 1-25 (2018) · Zbl 1499.35248 · doi:10.1186/s13661-018-1016-9
[10] Liu, M.; Fang, X., Normalized solutions for the Schrödinger systems with mass supercritical and double Sobolev critical growth, Z. Angew. Math. Phys., 2, 1-14 (2022) · Zbl 1490.35136
[11] Luo, X., Yang, X., Zou, W.: Positive normalized solutions to nonlinear elliptic systems in \({\mathbb{R}}^4\) with critical Sobolev exponent. Preprint at arXiv:2107.08708v1 (2020)
[12] Bartsch, T.; Jeanjean, L.; Soave, N., Normalized solutions for a system of coupled cubic Schrödinger equations on \({\mathbb{R} }^3 \), J. Math. Pures Appl., 106, 4, 583-614 (2016) · Zbl 1347.35107 · doi:10.1016/j.matpur.2016.03.004
[13] Bartsch, T.; Soave, N., A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 59, 5, 4998-5037 (2017) · Zbl 1485.35173 · doi:10.1016/j.jfa.2017.01.025
[14] Bartsch, T.; Jeanjean, L., Normalized solutions for nonlinear Schrödinger systems, Proc. R. Soc. Edinb. Sect. A, 148, 2, 225-242 (2018) · Zbl 1393.35035 · doi:10.1017/S0308210517000087
[15] Bartsch, T.; Soave, N., Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differ. Equ., 58, 1, 1-24 (2019) · Zbl 1409.35076 · doi:10.1007/s00526-018-1476-x
[16] Gou, T.; Jeanjean, L., Existence and orbital stability of standing waves for nonlinear Schrödinger equations systems, Nonlinear Anal., 144, 10-22 (2016) · Zbl 1457.35068 · doi:10.1016/j.na.2016.05.016
[17] Gou, T.; Jeanjean, L., Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity, 31, 2, 2319-2345 (2018) · Zbl 1396.35009 · doi:10.1088/1361-6544/aab0bf
[18] Ikoma, N.; Tanaka, K., A note on deformation argument for \(L^2({\mathbb{R} }^N)\) normalized solutions of nonlinear Schrödinger equations and systems, Adv. Differ. Equ., 24, 1983, 609-646 (2019) · Zbl 1437.35188
[19] Appolloni, L.; Secchi, S., Normalized solutions for the fractional NLS with mass supercritical nonlinearity, J. Differ. Equ., 286, 248-283 (2021) · Zbl 1471.35102 · doi:10.1016/j.jde.2021.03.016
[20] He, X.; Rădulescu, VD; Zou, W., Normalized ground states for the critical fractional Choquard equation with a local perturbation, J. Geom. Anal., 32, 10, 1-51 (2022) · Zbl 1495.35191 · doi:10.1007/s12220-022-00980-6
[21] Jeanjean, L.; Lu, S-S, A mass supercritical problem revisited, Calc. Var. Partial Differ. Equ., 59, 1-43 (2020) · Zbl 1453.35087 · doi:10.1007/s00526-020-01828-z
[22] Luo, H.; Zhang, Z., Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differ. Equ., 59, 4, 1-35 (2020) · Zbl 1445.35307 · doi:10.1007/s00526-020-01814-5
[23] Peng, S.; Xia, A., Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential, Commun. Pure Appl. Anal., 20, 11, 3723-3744 (2021) · Zbl 1480.35131 · doi:10.3934/cpaa.2021128
[24] Yao, S.; Chen, H.; Rădulescu, VD; Sun, J., Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 54, 3696-3723 (2022) · Zbl 1497.35145 · doi:10.1137/21M1463136
[25] Zhen, M.; Zhan, B., Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut., 35, 89-132 (2022) · Zbl 1481.35140 · doi:10.1007/s13163-021-00388-w
[26] Zuo, J., Zhong, Y., Repovš, D.: Normalized Gound Sate solutions for the fractional Sobolev critical NLSE with an extra mass supercritical nonlinearity. Preprint at arXiv:2206.12583v1
[27] Soave, N., Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279, 108610 (2020) · Zbl 1440.35311 · doi:10.1016/j.jfa.2020.108610
[28] Zhen, M.; Zhang, B.; Rădulescu, VD, Normalized solutions for nonlinear coupled fractional systems: low and high perturbations in the attractive case, Discret. Contin. Dyn. Syst. Ser. A, 41, 2653-2676 (2021) · Zbl 1466.35139 · doi:10.3934/dcds.2020379
[29] Mederski, J.; Schino, J., Least energy solutions to a cooperative system of Schrödinger equations with prescribed \(L^2\)-bounds: at least \(L^2\)-critical growth, Calc. Var. Partial Differ. Equ., 61, 1-31 (2022) · Zbl 1490.35367 · doi:10.1007/s00526-021-02116-0
[30] Chang, X.; Wang, Z-Q, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26, 2, 479-494 (2013) · Zbl 1276.35080 · doi:10.1088/0951-7715/26/2/479
[31] Servadei, R.; Valdinoci, E., The Brezis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[32] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[33] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 10, 1633-1659 (1997) · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[34] Li, Q.; Zou, W., The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases, Adv. Nonlinear Anal., 11, 1531-1551 (2022) · Zbl 1498.35197 · doi:10.1515/anona-2022-0252
[35] Zhang, X.; Zhang, B.; Repovš, D., Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal., 142, 48-68 (2016) · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[36] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[37] Chen, S.; Rădulescu, VD; Tang, X., Normalized solutions of nonautonomous Kirchhoff equations: sub- and super-critical cases, Appl. Math. Optim., 84, 773-806 (2021) · Zbl 1473.35149 · doi:10.1007/s00245-020-09661-8
[38] Zuo, J.; An, T.; Fiscella, A., A critical Kirchhoff-type problem driven by a \(p(\cdot )\)-fractional Laplace operator with variable \(s(\cdot )\)-order, Math. Methods Appl. Sci., 44, 1071-1085 (2021) · Zbl 1469.35236 · doi:10.1002/mma.6813
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.