×

Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent. (English) Zbl 1499.35248

Summary: In this paper, we study the following critical system with fractional Laplacian: \[ \begin{cases} (-\Delta)^su+\lambda_1u=\mu_1|u|^{2^{\ast}-2}u+\frac{\alpha \gamma}{2^{\ast}}|u|^{\alpha-2}u|v|^{\beta} \& \text{in } \Omega, \\ (-\Delta)^sv+\lambda_2v= \mu_2|v|^{2^{\ast}-2}v+\frac{\beta \gamma}{2^{\ast}}|u|^{\alpha}|v|^{\beta-2}v \& \text{in } \Omega, \\ u=v=0 & \text{in } \mathbb{R}^N\setminus\Omega, \end{cases} \] where \((-\Delta)^s\) is the fractional Laplacian, \(0< s<1\), \(\mu_1,\mu_2>0\), \(2^{\ast}=\frac{2N}{N-2s}\) is a fractional critical Sobolev exponent, \(N>2s, 1<\alpha, \beta<2, \alpha+\beta=2^{\ast} , \Omega\) is an open bounded set of \(\mathbb{R}^N\) with Lipschitz boundary and \(\lambda_1,\lambda_2>-\lambda_{1,s}(\Omega), \lambda_{1,s}(\Omega)\) is the first eigenvalue of the non-local operator \((-\Delta)^s\) with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all \(\gamma>0\). Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when \(\gamma\rightarrow 0\).

MSC:

35J50 Variational methods for elliptic systems
35B33 Critical exponents in context of PDEs
35R11 Fractional partial differential equations

References:

[1] Alberti, G., Bouchitté, G., Seppecher, P.: Phase transition with the line-tension effect. Arch. Ration. Mech. Anal. 144(1), 1-46 (1998) · Zbl 0915.76093 · doi:10.1007/s002050050111
[2] Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521-573 (2011) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[3] Abdallah, B.N., Mellet, A., Puel, M.: Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach. Arch. Ration. Mech. Anal. 199(2), 493-525 (2011) · Zbl 1242.76304 · doi:10.1007/s00205-010-0354-2
[4] Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[5] Barrios, B., Colorado, E., Pablo, A.D., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133-6162 (2012) · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[6] Colorado, E., Pablo, A.D., Sánchez, U.: Perturbations of a critical fractional equation. Pac. J. Math. 271(1), 65-85 (2014) · Zbl 1304.35745 · doi:10.2140/pjm.2014.271.65
[7] Joáo, M.d.O., Ferraz, D.: Concentration-compactness principle for nonlocal scalar field equations with critical growth. J. Math. Anal. Appl. 449(2), 1189-1228 (2016) · Zbl 1366.35232
[8] Caffarelli, L.A., Roquejoffre, J.M., Sire, Y.: Variational problems with free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12(5), 1151-1179 (2010) · Zbl 1221.35453 · doi:10.4171/JEMS/226
[9] Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31(1), 23-53 (2014) · Zbl 1286.35248 · doi:10.1016/j.anihpc.2013.02.001
[10] Shang, X., Zhang, J., Yang, Y.: Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Commun. Pure Appl. Anal. 13(2), 567-584 (2014) · Zbl 1279.35046
[11] Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446(1), 681-706 (2016) · Zbl 1409.35217 · doi:10.1016/j.jmaa.2016.08.069
[12] Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal., Theory Methods Appl. 42(5), 771-787 (2000) · Zbl 0958.35037 · doi:10.1016/S0362-546X(99)00121-2
[13] Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48(3-4), 695-711 (2013) · Zbl 1286.35104 · doi:10.1007/s00526-012-0568-2
[14] Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205(2), 515-551 (2012) · Zbl 1256.35132 · doi:10.1007/s00205-012-0513-8
[15] Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52(1-2), 423-467 (2015) · Zbl 1312.35158 · doi:10.1007/s00526-014-0717-x
[16] Cheng, X., Ma, S.: Existence of three nontrivial solutions for elliptic systems with critical exponents and weights. Nonlinear Anal., Theory Methods Appl. 69(10), 3537-3548 (2008) · Zbl 1158.35030 · doi:10.1016/j.na.2007.09.040
[17] Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887-898 (2012) · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[18] Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32(4), 875-900 (2015) · Zbl 1350.49009 · doi:10.1016/j.anihpc.2014.04.003
[19] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[20] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67-102 (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[21] Servadei, R., Valdinoci, E.: A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445-2464 (2017) · Zbl 1302.35413 · doi:10.3934/cpaa.2013.12.2445
[22] Li, Q., Yang, Z.: Multiple positive solutions for a fractional Laplacian system with critical nonlinearities. Bull. Malays. Math. Soc. 2, 1-27 (2016)
[23] He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. 15(4), 1285-1308 (2015) · Zbl 06636876 · doi:10.3934/cpaa.2016.15.1285
[24] Desouza, M., Araújo, Y.L.: Semilinear elliptic equations for the fractional Laplacian involving critical exponential growth. Math. Methods Appl. Sci. 40(5), 1757-1772 (2017) · Zbl 1368.35086 · doi:10.1002/mma.4095
[25] Guo, Y.: Nonexistence and symmetry of solutions to some fractional Laplacian equations in the upper half space. Acta Math. Sci. 37(3), 836-851 (2017) · Zbl 1399.35001 · doi:10.1016/S0252-9602(17)30040-1
[26] Hua, Y., Yu, X.: On the ground state solution for a critical fractional Laplacian equation. Nonlinear Anal., Theory Methods Appl. 87(87), 116-125 (2013) · Zbl 1285.35126 · doi:10.1016/j.na.2013.04.005
[27] Zhen, M., He, J., Xu, H.: Critical system involving fractional Laplacian. Commun. Pure Appl. Math. (2018) · Zbl 1401.35071
[28] Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295(1), 225-236 (2004). https://doi.org/10.1016/j.jmaa.2004.03.034 · Zbl 1084.26009 · doi:10.1016/j.jmaa.2004.03.034
[29] Chen, Z., Zou, W.: On linearly coupled Schrödinger systems. Proc. Am. Math. Soc. 142(1), 323-333 (2014) · Zbl 1283.35118 · doi:10.1090/S0002-9939-2013-12000-9
[30] Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[31] Pigong, H.: The effect of the domain topology on the number of positive solutions of an elliptic system involving critical Sobolev exponents. Houst. J. Math. 32(4), 1241-1257 (2006) · Zbl 1200.35116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.