×

Normalized solutions for nonlinear coupled fractional systems: low and high perturbations in the attractive case. (English) Zbl 1466.35139

The authors study coupled nonlocal systems of the form \begin{align*} \begin{cases} (-\Delta)^su-\lambda_1u=\mu_1 |u|^\alpha u+\beta |u|^{\frac{\alpha-2}{2}}u|v|^{\frac{\alpha+2}{2}} & \text{in } \mathbb{R}^N,\\ (-\Delta)^sv-\lambda_2v=\mu_2 |v|^\alpha v+\beta |u|^{\frac{\alpha+2}{2}}|v|^{\frac{\alpha-2}{2}}v & \text{in } \mathbb{R}^N, \end{cases} \end{align*} with \begin{align*} \int_{\mathbb{R}^N} u^2\,dx = b_1^2 \quad\text{and}\quad \int_{\mathbb{R}^N} v^2\,dx = b_2^2, \end{align*} where \((-\Delta)^s\) is the fractional Laplacian, \(0<s<1\), \(\mu_1, \mu_2>0\), \(N>2s\), and \(\frac{4s}{N}<\alpha\leq \frac{2s}{N-2s}\). In the case of low perturbations of the coupling parameter, by using two-dimensional linking arguments, the existence of \(\beta_1>0\) is shown such that when \(0<\beta<\beta_1\), then the system has a positive radial solution. In the second part, in the case of high perturbations of the coupling parameter, the existence of \(\beta_2>0\) is shown such that the system has a mountain-pass type solution for all \(\beta>\beta_2\).

MSC:

35J50 Variational methods for elliptic systems
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] B. Barrios; E. Colorado; A. de Pablo; U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252, 6133-6162 (2012) · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[2] T. Bartsch; L. Jeanjean; N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3 \), J. Math. Pures Appl., 106, 583-614 (2016) · Zbl 1347.35107 · doi:10.1016/j.matpur.2016.03.004
[3] T. Bartsch; N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272, 4998-5037 (2017) · Zbl 1485.35173 · doi:10.1016/j.jfa.2017.01.025
[4] T. Bartsch; N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differential Equations, 58, 24 pp (2019) · Zbl 1409.35076 · doi:10.1007/s00526-018-1476-x
[5] T. Bartsch; X. Zhong; W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann. (2020) · Zbl 1479.35762 · doi:10.1007/s00208-020-02000-w
[6] J. Bellazzini; L. Jeanjean; T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107, 303-339 (2013) · Zbl 1284.35391 · doi:10.1112/plms/pds072
[7] X. Cabré; Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 31, 23-53 (2014) · Zbl 1286.35248 · doi:10.1016/j.anihpc.2013.02.001
[8] L. Caffarelli; L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[9] S. Chen, V.D. Rădulescu and X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: Sub- and super-critical cases, Appl. Math. Optim., (2020).
[10] S. Cingolani; L. Jeanjean, Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal., 51, 3533-3568 (2019) · Zbl 1479.35331 · doi:10.1137/19M1243907
[11] R. L. Frank; E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in \({\mathbb R}\), Acta Math., 210, 260-318 (2013) · Zbl 1307.35315 · doi:10.1007/s11511-013-0095-9
[12] R. L. Frank; E. Lenzmann; L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69, 1671-1726 (2016) · Zbl 1365.35206 · doi:10.1002/cpa.21591
[13] P. Felmer; A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226, 2712-2738 (2011) · Zbl 1209.45009 · doi:10.1016/j.aim.2010.09.023
[14] Z. Guo; A. Luo; W. Zou, On critical systems involving fractional Laplacian, J. Math. Anal. Appl., 446, 681-706 (2017) · Zbl 1409.35217 · doi:10.1016/j.jmaa.2016.08.069
[15] Z. Guo; A. Luo; W. Zou, On critical systems involving fractional Laplacian, J. Math. Anal. Appl., 446, 681-706 (2017) · Zbl 0877.35091 · doi:10.1016/j.jmaa.2016.08.069
[16] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equation, Nonlinear Anal., 28, 1633-1659 (1997) · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[17] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30, 284-346 (1978) · Zbl 1294.82033 · doi:10.1007/s00205-010-0354-2
[18] A. Mellet; S. Mischler; C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199, 493-525 (2011) · Zbl 1365.35027 · doi:10.1007/s00205-010-0354-2
[19] P. Pucci; S. Saldi, Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators, Rev. Mat. Iberoam., 32, 1-22 (2016) · Zbl 1405.35045 · doi:10.4171/RMI/879
[20] S. Peng; S. We; Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differential Equations, 263, 709-731 (2017) · Zbl 1141.49035 · doi:10.1016/j.jde.2017.02.053
[21] P. Pucci; S. Saldi, Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators, Rev. Mat. Iberoam., 32, 1-22 (2016) · Zbl 1405.35045 · doi:10.4171/RMI/879
[22] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1317.35286 · doi:10.1002/cpa.20153
[23] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. · Zbl 1427.35340 · doi:10.1515/anona-2020-0021
[24] M. Xiang; B. Zhang; M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian, J. Math. Anal. Appl., 424, 1021-1041 (2015) · Zbl 1401.35071 · doi:10.1016/j.jmaa.2014.11.055
[25] M. Xiang; B. Zhang; V. Răadulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent, Adv. Nonlinear Anal., 9, 690-709 (2020) · Zbl 1427.35340 · doi:10.1515/anona-2020-0021
[26] M. Zhen; J. He; H. Xu, Critical system involving fractional Laplacian, Commun. Pure Appl. Anal., 18, 237-253 (2019) · Zbl 1425.35034 · doi:10.3934/cpaa.2019013
[27] M. Zhen; J. He; H. Xu; M. Yang, Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent, Bound. Value Probl., 96, 25 pp (2018) · Zbl 1499.35248 · doi:10.1186/s13661-018-1016-9
[28] M. Zhen; J. He; H. Xu; M. Yang, Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent, Discrete Contin. Dyn. Syst., 39, 6523-6539 (2019) · Zbl 1425.35034 · doi:10.3934/dcds.2019283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.