×

Positive least energy solutions for \(k\)-coupled critical systems involving fractional Laplacian. (English) Zbl 1480.35201

Summary: In this paper, we study the following \(k\)-coupled critical system: \[ \begin{cases} (-\Delta)^s u_i +\lambda_iu_i \& = \mu_i u_i^{2^*-1}+\sum\limits_{j = 1,j\ne i}^k \beta_{ij} u_i^{\frac{2^*}{2}-1}u_j^{\frac{2^*}{2}} \quad \text{in }\Omega,\\ u_i \& = 0 \quad \text{in }\mathbb{R}^N\backslash\Omega, \quad i = 1,2,\cdots, k. \end{cases} \] Here \((-\Delta)^s\) is the fractional Laplacian operator, \( 0<s<1 \), \( 2^* = \frac{2N}{N-2s} \) is a fractional Sobolev critical exponent, \( N>2s \), \( - \lambda_s( \Omega)< \lambda_i<0\), \(\mu_i>0 \), \( \beta_{ij} = \beta_{ji}\ne 0 \) and \( \Omega\subset\mathbb{R}^N \) is a smooth bounded domain, where \(\lambda_s( \Omega) \) is the first eigenvalue of \( (-\Delta)^s \) with the homogeneous Dirichlet boundary datum. We characterize the positive least energy solution of the \(k\)-coupled fractional critical system for the purely cooperative case \( \beta_{ij}>0 \) with \( N> 4s \). We shall introduce the idea of induction to prove our results. We point out that the key idea is to give a more accurate upper bound of the least energy. It’s interesting to see that the least energy of the \(k\)-coupled system decreases as \(k\) grows. Moreover, we establish the existence of positive least energy solution of the limit system in \(\mathbb{R}^N \), as well as classification results. Meanwhile, we also construct a positive solution for a more general system involving subcritical items. Besides, we investigated in the asymptotic behaviour of the positive least energy solutions of the critical system. We point out that the results of the fractional critical systems have some coincidences with those of the critical Schrödinger systems.

MSC:

35J61 Semilinear elliptic equations
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J50 Variational methods for elliptic systems
Full Text: DOI

References:

[1] B. Abdellaoui; V. Felli; I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole \(\mathbb R^N\), Calc. Var. PDE, 34, 97-137 (2009) · Zbl 1157.35030 · doi:10.1007/s00526-008-0177-2
[2] B. Barrios; E. Colorado; A. de Pablo; U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Diff. Equ., 252, 6133-6162 (2012) · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[3] W. Chen; S. Deng, Multiple solutions for a critical fractional elliptic system involving concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 146, 1167-1193 (2016) · Zbl 1364.35419
[4] Z. Chen; C. Lin, Asymptotic behavior of least energy solutions for a critical elliptic system, Int. Math. Res. Not., 21, 11045-11082 (2015) · Zbl 1342.35110 · doi:10.1093/imrn/rnv016
[5] Z. Chen; W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205, 515-551 (2012) · Zbl 1256.35132 · doi:10.1007/s00205-012-0513-8
[6] Z. Chen; W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case, Calc. Var. PDE., 52, 423-467 (2015) · Zbl 1312.35158 · doi:10.1007/s00526-014-0717-x
[7] A. Cotsiolis; N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295, 225-236 (2004) · Zbl 1084.26009 · doi:10.1016/j.jmaa.2004.03.034
[8] Z. Guo; S. Luo; W. Zou, On critical systems involving fractional Laplacian,, J. Math. Anal. Appl., 446, 681-706 (2017) · Zbl 1409.35217 · doi:10.1016/j.jmaa.2016.08.069
[9] X. He; M. Squassina; W. Zou, The Nehari manifold for fractional systems involving critical nonlinearities,, Comm. Pure Appl. Anal., 15, 1285-1308 (2016) · Zbl 06636876 · doi:10.3934/cpaa.2016.15.1285
[10] C. Mou, Nonlinear elliptic systems involving the fractional Laplacian in the unit ball and on a half space, Comm. Pure Appl. Anal., 14, 2335-2362 (2015) · Zbl 1326.35125 · doi:10.3934/cpaa.2015.14.2335
[11] E. Di Nezza; G. Palatucci; E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[12] Y. Park, Fractional Polya-Szegö inequality, J. Chungcheong Math. Soc., 24, 267-271 (2011)
[13] X. Ros-Oton; J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101, 275-302 (2014) · Zbl 1285.35020 · doi:10.1016/j.matpur.2013.06.003
[14] X. Ros-Oton; J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213, 587-628 (2014) · Zbl 1361.35199 · doi:10.1007/s00205-014-0740-2
[15] R. Servadei; E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898 (2012) · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[16] R. Servadei; E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58, 133-154 (2014) · Zbl 1292.35315 · doi:10.5565/PUBLMAT_58114_06
[17] R. Servadei; E. Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[18] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[19] Y. Wu, Ground states of a K-component critical system with linear and nonlinear couplings: the attractive case, Adv. Nonlinear Stud., 19, 595-623 (2019) · Zbl 1426.35116 · doi:10.1515/ans-2019-2049
[20] X. Yin and W. Zou, Positive least energy solutions for k-coupled Schrödinger system with critical exponent: The higher dimension and cooperative case, submitted. · Zbl 1481.35185
[21] X. Yu, Liouville type theorems for integral equations and integral systems, Cal. Var. PDE., 46, 75-95 (2013) · Zbl 1262.45004 · doi:10.1007/s00526-011-0474-z
[22] M. Zhen; J. He; H. Xu, Critical system involving fractional Laplacian, Comm. Pure. Appl. Anal., 18, 237-253 (2019) · Zbl 1401.35071 · doi:10.3934/cpaa.2019013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.