×

An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. (Régularité optimale pour la quasi-invariance de mesures gaussiennes par le flot de l’équation de Schrödinger non linéaire d’ordre 4.) (English. French summary) Zbl 1405.35198

Summary: We study the transport properties of the Gaussian measures on Sobolev spaces under the dynamics of the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we establish an optimal regularity result for quasi-invariance of the mean-zero Gaussian measures on Sobolev spaces. The main new ingredient is an improved energy estimate established by performing an infinite iteration of normal form reductions on the energy functional. Furthermore, we show that the dispersion is essential for such a quasi-invariance result by proving non quasi-invariance of the Gaussian measures under the dynamics of the dispersionless model.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35R06 PDEs with measure
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] A. V. Babin, A. A. Ilyin & E. S. Titi, “On the regularization mechanism for the periodic Korteweg-de Vries equation”, Comm. Pure Appl. Math.64 (2011) no. 5, p. 591-648 · Zbl 1284.35365
[2] M. Ben-Artzi, H. Koch & J.-C. Saut, “Dispersion estimates for fourth order Schrödinger equations”, C. R. Acad. Sci. Paris Sér. I Math.330 (2000) no. 2, p. 87-92 · Zbl 0942.35160
[3] A. Benassi, S. Jaffard & D. Roux, “Elliptic Gaussian random processes”, Rev. Mat. Iberoamericana13 (1997) no. 1, p. 19-90 · Zbl 0880.60053
[4] J. Bourgain, “Periodic nonlinear Schrödinger equation and invariant measures”, Comm. Math. Phys.166 (1994) no. 1, p. 1-26 · Zbl 0822.35126
[5] J. Bourgain, Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations, The Gelfand Mathematical Seminars, 1993-1995, Birkhäuser Boston, 1996, p. 23-43 · Zbl 0866.35109
[6] J. Bourgain, “Invariant measures for the \(2\)D-defocusing nonlinear Schrödinger equation”, Comm. Math. Phys.176 (1996) no. 2, p. 421-445 · Zbl 0852.35131
[7] R. H. Cameron & W. T. Martin, “Transformations of Wiener integrals under translations”, Ann. of Math. (2)45 (1944), p. 386-396 · Zbl 0063.00696
[8] J. Chung, Z. Guo, S. Kwon & T. Oh, “Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle”, Ann. Inst. H. Poincaré Anal. Non Linéaire34 (2017) no. 5, p. 1273-1297 · Zbl 1386.35376
[9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao, “A refined global well-posedness result for Schrödinger equations with derivative”, SIAM J. Math. Anal.34 (2002) no. 1, p. 64-86 · Zbl 1034.35120
[10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao, “Sharp global well-posedness for KdV and modified KdV on \(\mathbb{R}\) and \(\mathbb{T}\)”, J. Amer. Math. Soc.16 (2003) no. 3, p. 705-749 · Zbl 1025.35025
[11] A. B. Cruzeiro, “Équations différentielles ordinaires: non explosion et mesures quasi-invariantes”, J. Funct. Anal.54 (1983) no. 2, p. 193-205 · Zbl 0523.28020
[12] A. B. Cruzeiro, “Équations différentielles sur l’espace de Wiener et formules de Cameron-Martin non-linéaires”, J. Funct. Anal.54 (1983) no. 2, p. 206-227 · Zbl 0524.47028
[13] G. Fibich, B. Ilan & G. Papanicolaou, “Self-focusing with fourth-order dispersion”, SIAM J. Appl. Math.62 (2002) no. 4, p. 1437-1462 · Zbl 1003.35112
[14] J. Forlano & W. Trenberth, “On the transport property of Gaussian measures under the one-dimensional fractional nonlinear Schrödinger equations”, preprint
[15] P. Gérard & S. Grellier, “Effective integrable dynamics for a certain nonlinear wave equation”, Anal. PDE5 (2012) no. 5, p. 1139-1155 · Zbl 1268.35013
[16] P. Gérard, E. Lenzmann, O. Pocovnicu & P. Raphaël, “A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line”, Ann. PDE4 (2018) no. 1, Art. no. 7 · Zbl 1397.35062
[17] L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, 1967, p. 31-42 · Zbl 0187.40903
[18] Z. Guo, S. Kwon & T. Oh, “Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS”, Comm. Math. Phys.322 (2013) no. 1, p. 19-48 · Zbl 1308.35270
[19] Z. Guo & T. Oh, “Non-existence of solutions for the periodic cubic NLS below \(L^2\)”, Internat. Math. Res. Notices (2018) no. 6, p. 1656-1729 · Zbl 1410.35199
[20] G. H. Hardy & E. M. Wright, An introduction to the theory of numbers, The Clarendon Press, Oxford University Press, New York, 1979 · Zbl 0423.10001
[21] B. A. Ivanov & A. M. Kosevich, “Stable three-dimensional small-amplitude soliton in magnetic materials”, So. J. Low Temp. Phys.9 (1983), p. 439-442
[22] V. I. Judovič, “Non-stationary flows of an ideal incompressible fluid”, Ž. Vyčisl. Mat. i Mat. Fiz.3 (1963), p. 1032-1066, in Russian · Zbl 0129.19402
[23] S. Kakutani, “On equivalence of infinite product measures”, Ann. of Math. (2)49 (1948), p. 214-224 · Zbl 0030.02303
[24] V. I. Karpman, “Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations”, Phys. Rev. E (3)53 (1996), p. R1336-R1339
[25] V. I. Karpman & A. G. Shagalov, “Solitons and their stability in high dispersive systems. I. Fourth-order nonlinear Schrödinger-type equations with power-law nonlinearities”, Phys. Lett. A228 (1997) no. 1-2, p. 59-65 · Zbl 0962.35512
[26] H. H. Kuo, “Integration theory on infinite-dimensional manifolds”, Trans. Amer. Math. Soc.159 (1971), p. 57-78 · Zbl 0222.28007
[27] H. H. Kuo, Gaussian measures in Banach spaces, Lect. Notes in Math. 463, Springer-Verlag, Berlin-New York, 1975 · Zbl 0306.28010
[28] S. Kwon & T. Oh, “On unconditional well-posedness of modified KdV”, Internat. Math. Res. Notices (2012) no. 15, p. 3509-3534 · Zbl 1248.35186
[29] A. J. Majda, D. W. McLaughlin & E. G. Tabak, “A one-dimensional model for dispersive wave turbulence”, J. Nonlinear Sci.7 (1997) no. 1, p. 9-44 · Zbl 0882.76035
[30] M. B. Marcus & J. Rosen, Markov processes, Gaussian processes, and local times, Cambridge Studies in Advanced Mathematics 100, Cambridge University Press, Cambridge, 2006 · Zbl 1129.60002
[31] A. R. Nahmod, L. Rey-Bellet, S. Sheffield & G. Staffilani, “Absolute continuity of Brownian bridges under certain gauge transformations”, Math. Res. Lett.18 (2011) no. 5, p. 875-887 · Zbl 1250.60018
[32] T. Oh, Y. Tsutsumi & N. Tzvetkov, “Quasi-invariant Gaussian measures for the cubic nonlinear Schrödinger equation with third order dispersion”, , 2018
[33] T. Oh & N. Tzvetkov, On the transport of Gaussian measures under the flow of Hamiltonian PDEs, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2015-2016, Ed. Éc. Polytech., 2017 · Zbl 1361.35158
[34] T. Oh & N. Tzvetkov, “Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation”, Probab. Theory Related Fields169 (2017) no. 3-4, p. 1121-1168 · Zbl 1382.35274
[35] T. Oh & N. Tzvetkov, “Quasi-invariant Gaussian measures for the two-dimensional cubic nonlinear wave equation”, J. Eur. Math. Soc. (JEMS) (to appear),
[36] T. Oh, N. Tzvetkov & Y. Wang, “Solving the 4NLS with white noise initial data”, preprint · Zbl 1452.35193
[37] T. Oh & Y. Wang, “Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces”, Forum Math. Sigma6 (2018), article no. e5 · Zbl 1431.35178
[38] T. Oh & Y. Wang, “On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) (to appear), · Zbl 1438.35397
[39] J. Picard, Representation formulae for the fractional Brownian motion, Séminaire de Probabilités XLIII, Lect. Notes in Math. 2006, Springer, 2011, p. 3-70 · Zbl 1221.60050
[40] O. Pocovnicu, “First and second order approximations for a nonlinear wave equation”, J. Dynam. Differential Equations25 (2013) no. 2, p. 305-333 · Zbl 1270.65060
[41] R. Ramer, “On nonlinear transformations of Gaussian measures”, J. Funct. Anal.15 (1974), p. 166-187 · Zbl 0288.28011
[42] L. C. G. Rogers & D. Williams, Diffusions, Markov processes, and martingales, Vol. 1. Foundations, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000, Reprint of the second (1994) edition · Zbl 0826.60002
[43] S. K. Turitsyn, “Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons”, Teoret. Mat. Fiz.64 (1985) no. 2, p. 226-232
[44] N. Tzvetkov, “Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations”, Forum Math. Sigma3 (2015), article no. e28 · Zbl 1333.35243
[45] N. Tzvetkov & N. Visciglia, “Invariant measures and long-time behavior for the Benjamin-Ono equation”, Internat. Math. Res. Notices (2014) no. 17, p. 4679-4714 · Zbl 1301.35141
[46] N. Tzvetkov & N. Visciglia, “Invariant measures and long time behaviour for the Benjamin-Ono equation II”, J. Math. Pures Appl. (9)103 (2015) no. 1, p. 102-141     ##img## Creative Commons License BY-ND     ISSN : 2429-7100 - e-ISSN : 2270-518X · Zbl 1315.37051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.