×

First and second order approximations for a nonlinear wave equation. (English) Zbl 1270.65060

The author discusses the first- and second-order approximations for a nonlinear wave equation. She first explains the need of splitting the nonlinearity into its resonant and oscillatory part, which is the ground for both the renormalization group (RG) and the averaging method. Later, the author presents the RG method and uses it to prove some theorems. For a better understanding of the second-order approximation, she proves a theorem from a paper of P. Gérard and S. Grellier [Anal. PDE 5, No. 5, 1139–1155 (2012; Zbl 1268.35013)] using the RG method. In addition, the author presents an averaging method of the second order and uses it to prove an additional theorem.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q35 PDEs in connection with fluid mechanics
35L70 Second-order nonlinear hyperbolic equations

Citations:

Zbl 1268.35013

References:

[1] Abou Salem, W.K.: On the renormalization group approach to perturbation theory for PDEs. Ann. Henri Poincaré 11(6), 1007-1021 (2010) · Zbl 1209.35012 · doi:10.1007/s00023-010-0046-3
[2] Bogolyubov, N.N., Mitropol’skii, YuA: Asymptotic Methods in the Theory of Nonlinear Oscillations. Hindustan, Delhi (1958) · Zbl 0083.08101
[3] Chen, L.-Y., Goldenfeld, N., Oono, Y.: Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73(10), 1311-1315 (1994) · Zbl 1020.81729 · doi:10.1103/PhysRevLett.73.1311
[4] Chen, L.-Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 543(1), 376-394 (1996) · doi:10.1103/PhysRevE.54.376
[5] De Ville, R., Harkin, A., Holzer, M., Josic, K., Kaper, T.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D 237, 1029-1052 (2008) · Zbl 1145.34331 · doi:10.1016/j.physd.2007.12.009
[6] Gérard, P., Grellier, S.: The cubic Szegö equation. Annales Scientifiques de l’Ecole Normale Supérieure, Paris, \[4^e\] série, t. 43, 761-810 (2010) · Zbl 1228.35225
[7] Gérard, P., Grellier, S.: Invariant tori for the cubic Szegö equation. Inventiones Mathematicae 187, 707-754 (2012) · Zbl 1252.35026
[8] Gérard, P., Grellier, S.: Effective integrable dynamics for some nonlinear wave equation. to appear in Analysis and PDEs, arXiv:1110.5719v1 · Zbl 1268.35013
[9] Germain, P.: Space-time resonances, arXiv:1102.1695 · Zbl 1307.35210
[10] Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 2D quadratic Schrödinger equations, arXiv:1001.5158 · Zbl 1244.35134
[11] Germain, P.: Global existence for coupled Klein-Gordon equations with different speeds, arXiv:1005.5238 · Zbl 1255.35162
[12] Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris 347(15-16), 897-902 (2009) · Zbl 1177.35168 · doi:10.1016/j.crma.2009.05.005
[13] Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. IMRN 3, 414-432 (2009) · Zbl 1156.35087
[14] Gustafson, S., Nakanishi, K., Tsai, T.-P.: Scattering theory for the Gross-Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11(4), 657-707 (2009) · Zbl 1180.35481 · doi:10.1142/S0219199709003491
[15] Krieger, J., Lenzmann, E., Raphael, P.: Non dispersive solutions to the \[L^2\] critical half wave equation, arXiv:1203.2476 · Zbl 1288.35433
[16] Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[17] Moise, I., Temam, R.: Renormalization group method. Applications to Navier Stokes equation. Discret. Cont. Dyn. Syst. 6, 191-200 (2000) · Zbl 1021.76009
[18] Moise, I., Ziane, M.: Renormalization group method. Applications to partial differential equations. J. Dyn. Differ. Equ. 13, 275-321 (2001) · Zbl 1081.35082
[19] Shatah, J.: Space-time resonances. Quart. Appl. Math. 68(1), 161-167 (2010) · Zbl 1190.35025
[20] Petcu, M., Temam, R., Wirosoetisno, D.: Renormalization group method applied to the primitive equations. J. Differ. Equ. 208, 215-257 (2005) · Zbl 1080.35090 · doi:10.1016/j.jde.2003.10.011
[21] Pocovnicu, O.: Traveling waves for the cubic Szegö equation on the real line. Anal. PDE 4(3), 379-404 (2011) · Zbl 1270.35172 · doi:10.2140/apde.2011.4.379
[22] Pocovnicu, O.: Explicit formula for the solution of the Szegő equation on the real line and applications. Disc. Cont. Dyn. Sys. A 31(3), 607-649 (2011) · Zbl 1235.35263 · doi:10.3934/dcds.2011.31.607
[23] Temam, R., Wirosoetisno, D.: Averaging of differential equations generating oscillations and an application to control. Special issue dedicated to the memory of Jacques-Louis Lions. Appl. Math. Optim. 46(2-3), 313-330 (2002) · Zbl 1031.34052 · doi:10.1007/s00245-002-0749-z
[24] Ziane, M.: On a certain renormalization group method. J. Maths. Phys., 41(5), (2000) · Zbl 1034.82017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.