×

Global existence for coupled Klein-Gordon equations with different speeds. (English. French summary) Zbl 1255.35162

This paper deals with the global existence of solutions of the Cauchy problem for a system of semilinear wave equations with two speeds, \(1\) and \(c\); the unknowns \(u^1\) and \(u^c\) solve \[ \begin{align*}{ (\partial_{tt}-\Delta)u^1+u^1 &= Q^1(u_1,u^c) \cr (\partial_{tt}-c^2\Delta)u^c+u^c &= Q^c(u_1,u^c), }\end{align*} \] in three space dimensions, where the nonlinearities \(Q^1\) and \(Q^c\) are \({\mathcal O}(|u^1|^2+|u^c|^2)\) as \(u^1\) and \(u^c\to 0\). A condition of “separation of resonances” is assumed. It is checked numerically that it is satisfied for \(c=5\), and the author “believe[s] that it is always [satisfied] except maybe for exceptional values of \(c\).” Assuming that the data are small in \(H^{N+1}\times H^N\) (for \(N\) sufficiently large), and also small in a weighted \(H^3\times H^2\) space, the main result expresses that the solutions are global; in addition, as \(t\to\infty\), they converge to \((U^1,U^c)\) such that \(-\Delta U^1+U^1=-\Delta U^c+U^c=0\) in \(H^{N+1}\), and their \(H^3\) norms are \({\mathcal O}(1/\sqrt t)\).

MSC:

35L52 Initial value problems for second-order hyperbolic systems
35L71 Second-order semilinear hyperbolic equations
35B34 Resonance in context of PDEs

References:

[1] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39, 2, 267-282 (1986) · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[2] Coifman, R.; Meyer, Y., Au delà des opérateurs pseudo-différentiels, 57 (1978) · Zbl 0483.35082
[3] Delort, J.-M.; Fang, D., Almost global existence for solutions of semilinear Klein-Gordon equations with small weakly decaying Cauchy data, Comm. Partial Differential Equations, 25, 11-12, 2119-1269 (2000) · Zbl 0979.35101 · doi:10.1080/03605300008821580
[4] Delort, J.-M.; Fang, D.; Xue, R., Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211, 2, 288-323 (2004) · Zbl 1061.35089 · doi:10.1016/j.jfa.2004.01.008
[5] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for 2D quadratic Schrödinger equations. · Zbl 1244.35134
[6] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for the gravity water waves equation in dimension 3 · Zbl 1177.35168
[7] Germain, P.; Masmoudi, N.; Shatah, J., Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, 3, 414-432 (2009) · Zbl 1156.35087
[8] Ginibre, J.; Velo, G., Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43, 4, 399-442 (1985) · Zbl 0595.35089
[9] Hayashi, N.; Naumkin, P.; Wibowo, R., Nonlinear scattering for a system of nonlinear Klein-Gordon equations, J. Math. Phys., 49, 10 (2008) · Zbl 1152.81467 · doi:10.1063/1.2990493
[10] Hörmander, L., Lectures on nonlinear hyperbolic differential equations, 26 (1997) · Zbl 0881.35001
[11] Ibrahim, S.; Masmoudi, N.; Nakanishi, K., Scattering threshold for the focusing nonlinear Klein-Gordon equation · Zbl 1270.35132
[12] John, F., Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math., 34, 1, 29-51 (1981) · Zbl 0453.35060 · doi:10.1002/cpa.3160340103
[13] Katayama, S.; Yokoyama, K., Global small amplitude solutions to systems of nonlinear wave equations with multiple speeds, Osaka J. Math., 43, 2, 283-326 (2006) · Zbl 1195.35225
[14] Klainerman, S., 23 (1983) · Zbl 0599.35105
[15] Klainerman, S., Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38, 5, 631-641 (1985) · Zbl 0597.35100 · doi:10.1002/cpa.3160380512
[16] Ohta, M., Counterexample to global existence for systems of nonlinear wave equations with different propagation speeds, Funkcial. Ekvac., 46, 3, 471-477 (2003) · Zbl 1330.35253 · doi:10.1619/fesi.46.471
[17] Shatah, J., Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38, 5, 685-696 (1985) · Zbl 0597.35101 · doi:10.1002/cpa.3160380516
[18] Sideris, T.; Tu, S.-Y., Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33, 2, 477-488 (2001) · Zbl 1002.35091 · doi:10.1137/S0036141000378966
[19] Tsutsumi, Y., Stability of constant equilibrium for the Maxwell-Higgs equations, Funkcial. Ekvac., 46, 1, 41-62 (2003) · Zbl 1151.58303 · doi:10.1619/fesi.46.41
[20] Yokoyama, K., Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52, 3, 609-632 (2000) · Zbl 0968.35081 · doi:10.2969/jmsj/05230609
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.