×

Sharp global well-posedness for KdV and modified KdV on \(\mathbb R\) and \(\mathbb T\). (English) Zbl 1025.35025

The authors consider the \(\mathbb R \)-valued Korteweg-de Vries (KdV) equation \[ u_t+u_{xxx}+uu_x =0,\quad u:{\mathbb R}\times[0,T]\mapsto {\mathbb R}. \] They prove the global well-posedness (GWP) of KdV for initial data in \(H^s({\mathbb R})\), \(s>-3/4\). The local well-posedness of KdV in \(H^s\) for \(s>-3/4\) was obtained by C. E. Kenig, G. Ponce and L. Vega [J. Am. Math. Soc. 9, 573-603 (1996; Zbl 0848.35114)].
The range of \(s\) is sharp; M. Christ, J. Colliander and T. Tao [Am. J. Math. 125, No. 6, 1235–1293 (2003; Zbl 1048.35101)] proved the ill-posedness of KdV for \(s<-3/4\) in the sense that the solution operator is not uniformly continuous with respect to the \(H^s\) norm.
The authors also prove various GWP results for periodic KdV and modified KdV equations.
The paper is well written and highly readable. The introduction includes a detailed history of related results as well as a useful heuristic discussion of their method.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
42B35 Function spaces arising in harmonic analysis
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Michael Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, Ann. of Math. (2) 118 (1983), no. 1, 187 – 214. · Zbl 0522.35064 · doi:10.2307/2006959
[2] Björn Birnir, Carlos E. Kenig, Gustavo Ponce, Nils Svanstedt, and Luis Vega, On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. (2) 53 (1996), no. 3, 551 – 559. · Zbl 0855.35112 · doi:10.1112/jlms/53.3.551
[3] Björn Birnir, Gustavo Ponce, and Nils Svanstedt, The local ill-posedness of the modified KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 4, 529 – 535 (English, with English and French summaries). · Zbl 0858.35130
[4] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), no. 1287, 555 – 601. · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107 – 156. , https://doi.org/10.1007/BF01896020 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209 – 262. , https://doi.org/10.1007/BF01895688 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107 – 156. , https://doi.org/10.1007/BF01896020 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209 – 262. · Zbl 0787.35098 · doi:10.1007/BF01895688
[6] Jean Bourgain, Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties, Internat. Math. Res. Notices 2 (1994), 79 – 88. · Zbl 0818.35112 · doi:10.1155/S1073792894000103
[7] J. Bourgain, Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations, Geom. Funct. Anal. 5 (1995), no. 2, 105 – 140. · Zbl 0879.35024 · doi:10.1007/BF01895664
[8] Jean Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices 6 (1996), 277 – 304. · Zbl 0934.35166 · doi:10.1155/S1073792896000207
[9] J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), no. 2, 115 – 159. · Zbl 0891.35138 · doi:10.1007/s000290050008
[10] J. Bourgain, Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity, Internat. Math. Res. Notices 5 (1998), 253 – 283. · Zbl 0917.35126 · doi:10.1155/S1073792898000191
[11] Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287 – 299. (errata insert). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, III. · Zbl 0215.18303
[12] Amy Cohen, Existence and regularity for solutions of the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 71 (1979), no. 2, 143 – 175. · Zbl 0415.35069 · doi:10.1007/BF00248725
[13] M. Christ, J. Colliander, and T. Tao Asymptotics, frequency modulation and low regularity ill-posedness for canonical defocusing equations. To appear Amer. J. Math., 2002.
[14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. A refined global wellposedness result for Schrödinger equations with derivative. To appear SIAM J. Math. Anal., 2002. · Zbl 1034.35120
[15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Differential Equations (2001), No. 26, 7. · Zbl 0967.35119
[16] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal. 33 (2001), no. 3, 649 – 669. · Zbl 1002.35113 · doi:10.1137/S0036141001384387
[17] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Multilinear estimates for periodic KdV equations and applications. To appear J. Funct. Anal., 2002. · Zbl 1062.35109
[18] J. Colliander, G. Staffilani, and H. Takaoka, Global wellposedness for KdV below \?&sup2;, Math. Res. Lett. 6 (1999), no. 5-6, 755 – 778. · Zbl 0959.35144 · doi:10.4310/MRL.1999.v6.n6.a13
[19] Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44 – 52. · Zbl 0262.42007 · doi:10.1007/BF02771772
[20] German Fonseca, Felipe Linares, and Gustavo Ponce, Global well-posedness for the modified Korteweg-de Vries equation, Comm. Partial Differential Equations 24 (1999), no. 3-4, 683 – 705. · Zbl 0930.35154 · doi:10.1080/03605309908821438
[21] G. Fonseca, F. Linares, and G. Ponce. Global existence for the critical generalized KdV equation. Preprint, 2002. · Zbl 1034.35121
[22] J. Ginibre, An introduction to nonlinear Schrödinger equations, Nonlinear waves (Sapporo, 1995) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 10, Gakkōtosho, Tokyo, 1997, pp. 85 – 133. · Zbl 0891.35146
[23] J. Ginibre, Y. Tsutsumi, and G. Velo, Existence and uniqueness of solutions for the generalized Korteweg de Vries equation, Math. Z. 203 (1990), no. 1, 9 – 36. · Zbl 0662.35114 · doi:10.1007/BF02570720
[24] Jean Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Astérisque 237 (1996), Exp. No. 796, 4, 163 – 187 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95.
[25] A. Grünrock. A bilinear Airy-estimate with application to gKdV-3. Preprint, 2001. · Zbl 1212.35412
[26] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. · Zbl 0805.58003
[27] J.-L. Joly, G. Métivier, and J. Rauch, A nonlinear instability for 3\times 3 systems of conservation laws, Comm. Math. Phys. 162 (1994), no. 1, 47 – 59. · Zbl 0820.35093
[28] Tosio Kato, The Cauchy problem for the Korteweg-de Vries equation, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979) Res. Notes in Math., vol. 53, Pitman, Boston, Mass.-London, 1981, pp. 293 – 307.
[29] Markus Keel and Terence Tao, Local and global well-posedness of wave maps on \?\textonesuperior \(^{+}\)\textonesuperior for rough data, Internat. Math. Res. Notices 21 (1998), 1117 – 1156. · Zbl 0999.58013 · doi:10.1155/S107379289800066X
[30] M. Keel and T. Tao. Global well-posedness for large data for the Maxwell-Klein-Gordon equation below the energy norm. Preprint, 2000.
[31] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527 – 620. · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[32] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573 – 603. · Zbl 0848.35114
[33] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617 – 633. · Zbl 1034.35145 · doi:10.1215/S0012-7094-01-10638-8
[34] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Global well-posedness for semi-linear wave equations, Comm. Partial Differential Equations 25 (2000), no. 9-10, 1741 – 1752. · Zbl 0961.35092 · doi:10.1080/03605300008821565
[35] S. B. Kuksin, On squeezing and flow of energy for nonlinear wave equations, Geom. Funct. Anal. 5 (1995), no. 4, 668 – 701. · Zbl 0834.35086 · doi:10.1007/BF01902057
[36] Sergej B. Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs, Comm. Math. Phys. 167 (1995), no. 3, 531 – 552. · Zbl 0827.35121
[37] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Internat. Math. Res. Notices 9 (1994), 383ff., approx. 7 pp., issn=1073-7928, review=\MR{1301438}, doi=10.1155/S1073792894000425,. · Zbl 0832.35096
[38] Y. Martel and F. Merle. Blow up in finite time and dynamics of blow up solutions for the \(L^2\) critical generalized KdV equation. J. Amer. Math. Soc. 15(3):617-664, 2002. · Zbl 0996.35064
[39] F. Merle. Personal communication. 2002.
[40] John J. Benedetto and Hans Heinig, Fourier transform inequalities with measure weights, Adv. Math. 96 (1992), no. 2, 194 – 225. · Zbl 0772.42005 · doi:10.1016/0001-8708(92)90055-P
[41] Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, 1997. Calderón-Zygmund and multilinear operators; Translated from the 1990 and 1991 French originals by David Salinger. · Zbl 0945.42015
[42] Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202 – 1204. , https://doi.org/10.1063/1.1664700 Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204 – 1209. · Zbl 0283.35019 · doi:10.1063/1.1664701
[43] Robert M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Rev. 18 (1976), no. 3, 412 – 459. · Zbl 0333.35021 · doi:10.1137/1018076
[44] Robert M. Miura, Errata: ”The Korteweg-deVries equation: a survey of results” (SIAM Rev. 18 (1976), no. 3, 412 – 459), SIAM Rev. 19 (1977), no. 4, vi. · Zbl 0373.35011 · doi:10.1137/1019101
[45] K. Nakanishi, H. Takaoka, and Y. Tsutsumi. Counterexamples to bilinear estimates related to the KdV equation and the nonlinear Schrödinger equation. Methods of Appl. Anal. 8(4):569-578, 2001. · Zbl 1011.35119
[46] Jeffrey Rauch and Michael Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J. 49 (1982), no. 2, 397 – 475. · Zbl 0503.35055
[47] R. R. Rosales. I. Exact solution of some nonlinear evolution equations, II. The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. PhD thesis, California Institute of Technology, 1977.
[48] Hideo Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), no. 2, 483 – 499. · Zbl 1021.35099 · doi:10.3934/dcds.2000.6.483
[49] Terence Tao, Multilinear weighted convolution of \?&sup2;-functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), no. 5, 839 – 908. · Zbl 0998.42005
[50] N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, Differential Integral Equations 13 (2000), no. 10-12, 1289 – 1320. · Zbl 0977.35125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.