×

Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle. (English) Zbl 1386.35376

Summary: We consider the quadratic derivative nonlinear Schrödinger equation (dNLS) on the circle. In particular, we develop an infinite iteration scheme of normal form reductions for dNLS. By combining this normal form procedure with the Cole-Hopf transformation, we prove unconditional global well-posedness in \(L^2(\mathbb T)\), and more generally in certain Fourier-Lebesgue spaces \(\mathcal FL^{s,p}(\mathbb T)\), under the mean-zero and smallness assumptions. As a byproduct, we construct an infinite sequence of quantities that are invariant under the dynamics. We also show the necessity of the smallness assumption by explicitly constructing a finite time blowup solution with non-small mean-zero initial data.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren Math. Wiss., vol. 250 (1988), Springer-Verlag: Springer-Verlag New York, xiv+351 pp · Zbl 0648.34002
[2] Babin, A.; Ilyin, A.; Titi, E., On the regularization mechanism for the periodic Korteweg-de Vries equation, Commun. Pure Appl. Math., 64, 5, 591-648 (2011) · Zbl 1284.35365
[3] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3, 107-156 (1993) · Zbl 0787.35097
[4] Cazenave, T.; Weissler, F., The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\), Nonlinear Anal., 14, 10, 807-836 (1990) · Zbl 0706.35127
[5] Chihara, H., Gain of regularity for semilinear Schrödinger equations, Math. Ann., 315, 4, 529-567 (1999) · Zbl 0942.35161
[6] M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint, 2003.; M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint, 2003.
[7] Cole, J., On a quasi-linear parabolic equation occurring in aerodynamics, Q. Appl. Math., 9, 225-236 (1951) · Zbl 0043.09902
[8] Erdoğan, M. B.; Tzirakis, N., Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., 2013, 20, 4589-4614 (2013) · Zbl 1295.35364
[9] Ginibre, J.; Velo, G., On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 4, 309-323 (1984) · Zbl 0569.35070
[10] Guo, Z.; Kwon, S.; Oh, T., Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., 322, 19-48 (2013) · Zbl 1308.35270
[11] Guo, Y.; Simon, K.; Titi, E., Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello · Zbl 1326.35313
[12] Hayashi, N.; Ozawa, T., Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25, 6, 1488-1503 (1994) · Zbl 0809.35124
[13] Herr, S., On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., 2006, Article 96763 pp. (2006), 33 pp · Zbl 1149.35074
[14] Herr, S.; Tataru, D.; Tzvetkov, N., Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in \(H^1(T^3)\), Duke Math. J., 159, 329-349 (2011) · Zbl 1230.35130
[15] Hopf, E., The partial differential equation \(u_t + u u_x = u_{x x}\), Commun. Pure Appl. Math., 3, 3, 201-230 (1950) · Zbl 0039.10403
[16] Kenig, C.; Ponce, G.; Vega, L., Small solutions to nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 10, 255-288 (1993) · Zbl 0786.35121
[17] Koch, K.; Tzvetkov, N., Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 30, 1833-1847 (2005) · Zbl 1156.35460
[18] Kwon, S.; Oh, T., On unconditional well-posedness of modified KdV, Int. Math. Res. Not., 2012, 15, 3509-3534 (2012) · Zbl 1248.35186
[19] Molinet, L., Global well-posedness in \(L^2\) for the periodic Benjamin-Ono equation, Am. J. Math., 130, 635-685 (2008) · Zbl 1157.35001
[20] Nikolenko, N., The method of Poincaré normal forms in problems of integrability of equations of evolution type, Usp. Mat. Nauk. Usp. Mat. Nauk, Russ. Math. Surv., 41, 5, 63-114 (1986), Engl. Trans. · Zbl 0632.35026
[21] Oh, T.; Tzvetkov, N., Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation · Zbl 1382.35274
[22] Stefanov, A., On quadratic derivative Schrödinger equations in one space dimension, Trans. Am. Math. Soc., 359, 8, 3589-3607 (2007) · Zbl 1119.35090
[23] Takaoka, H., Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differ. Equ., 4, 4, 561-580 (1999) · Zbl 0951.35125
[24] Tao, T., Global well-posedness of the Benjamin-Ono equation in \(H^1(R)\), J. Hyperbolic Differ. Equ., 1, 27-49 (2004) · Zbl 1055.35104
[25] Tao, T., Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Reg. Conf. Ser. Math., vol. 106 (2006), American Mathematical Society: American Mathematical Society Providence, RI, Published for the Conference Board of the Mathematical Sciences, Washington, DC, xvi+373 pp · Zbl 1106.35001
[26] Tsutsumi, Y., \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, 30, 1, 115-125 (1987) · Zbl 0638.35021
[27] Tzvetkov, N., Ill-Posedness Issues for Nonlinear Dispersive Equations, Lectures on Nonlinear Dispersive Equations, GAKUTO Int. Ser. Math. Sci. Appl., vol. 27, 63-103 (2006), Gakkōtosho: Gakkōtosho Tokyo · Zbl 1158.35081
[28] Wang, Y., Periodic nonlinear Schrödinger equation in critical \(H^s(T^n)\) spaces, SIAM J. Math. Anal., 45, 3, 1691-1703 (2013) · Zbl 1291.35369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.