×

A finiteness property for braided fusion categories. (English) Zbl 1253.18005

In this paper the authors consider a finiteness condition, called property F, on a braided fusion category \(\mathcal C\). Having property F means that all braid group representations on the endomorphism spaces of \(n\)th tensor powers of objects of \(\mathcal C\), arising from the braiding of \(\mathcal C\), factor over finite groups. For instance, in the paper [Pac. J. Math. 234, No. 1, 33–41 (2008; Zbl 1207.16038)], P. Etingof, E. Rowell and S. Witherspoon have established that if \(\mathcal C\) is a braided group-theoretical fusion category, as in Section 8.8 of the paper [Ann. Math. (2) 162, No. 2, 581–642 (2005; Zbl 1125.16025)] by P. Etingof, D. Nikshych and V. Ostrik, then \(\mathcal C\) has property F. The authors conjecture that having property F is equivalent to \(\mathcal C\) being weakly integral, that is, having integer Frobenius-Perron dimension. Examples of fusion categories of quantum group type are presented to support this conjecture. One of the main results of the paper gives a list of sufficient conditions for a braided integral (that is, such that all Frobenius-Perron dimensions of simple objects are integers) fusion category to have property F. As part of the proof of this result, some classification results for certain classes of fusion categories are obtained: this includes fusion categories generated by a self-dual object of dimension 2 and whose simple objects have dimension 1 or 2, and also modular categories of dimension \(pq^2\) and \(pq^3\), where \(p\) and \(q\) are distinct prime numbers.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
20F36 Braid groups; Artin groups
16T05 Hopf algebras and their applications

References:

[1] Andersen, H.H.: Tensor products of quantized tilting modules. Commun. Math. Phys. 149, 149–159 (1991) · Zbl 0760.17004 · doi:10.1007/BF02096627
[2] Bakalov, B., Kirillov, Jr., A.: Lectures on tensor categories and modular functors. In: University Lecture Series, vol. 21. American Mathematics Society (2001) · Zbl 0965.18002
[3] Bichon, J., Natale, S.: Hopf algebra deformations of binary polyhedral groups (2009). arXiv:0907.1879 · Zbl 1238.16024
[4] Das Sarma, S., Freedman, M., Nayak, C., Simon, S.H., Stern, A.: Non-Abelian anyons and topological quantum computation. Rev. Modern Phys. 80(3), 1083–1159 (2008) · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[5] Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories (2007). arXiv:0704.0195 · Zbl 1201.18005
[6] Etingof, P., Gelaki, S.: Some properties of finite-dimensional semisimple Hopf algebras. Math. Res. Lett. 5, 191–197 (1998) · Zbl 0907.16016 · doi:10.4310/MRL.1998.v5.n2.a5
[7] Etingof, P., Gelaki, S., Ostrik, V.: Classification of fusion categories of dimension pq. Int. Math. Res. Not. 2004(57), 3041–3056 (2004) · Zbl 1063.18005 · doi:10.1155/S1073792804131206
[8] Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162(2), 581–642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[9] Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories (2008). arXiv:0809.3031 · Zbl 1210.18009
[10] Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654 (2004) · Zbl 1077.18005
[11] Etingof, P., Rowell, E.C., Witherspoon, S.: Braid group representations from quantum doubles of finite groups. Pac. J. Math. 234(1), 33–41 (2008) · Zbl 1207.16038 · doi:10.2140/pjm.2008.234.33
[12] Finkelberg, M.: An equivalence of fusion categories. Geom. Funct. Anal. 6(2), 249–267 (1996) · Zbl 0860.17040 · doi:10.1007/BF02247887
[13] Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15(4), 413–427 (2006) · Zbl 1097.20034 · doi:10.1142/S0218216506004580
[14] Freedman, M.H., Larsen, M.J., Wang, Z.: The two-eigenvalue problem and density of Jones representation of braid groups. Commun. Math. Phys. 228, 177–199 (2002) · Zbl 1045.20027 · doi:10.1007/s002200200636
[15] Gannon, T.: The level 2 and 3 modular invariants for the orthogonal algebras. Can. J. Math. 52(3), 503–521 (2000) · Zbl 1015.17025 · doi:10.4153/CJM-2000-023-2
[16] Gelaki, S., Nikshych, D.: Nilpotent fusion categories. Adv. Math. 217, 1053–1071 (2008) · Zbl 1168.18004 · doi:10.1016/j.aim.2007.08.001
[17] Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra and Number Theory 3(8), 959–990 (2009) · Zbl 1201.18006 · doi:10.2140/ant.2009.3.959
[18] Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter Graphs and Towers of Algebras. MSRI Publications, vol. 14. Springer, New York (1989) · Zbl 0698.46050
[19] Izumi, M.: The structure of sectors associated with Longo–Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001) · Zbl 1033.46506 · doi:10.1142/S0129055X01000818
[20] Jones, V.F.R.: Braid groups, Hecke algebras and type II1 factors in geometric methods. In: operator Algebras (Kyoto, 1983), pp. 242–273. Pitman Res. Notes Math. Ser., vol. 123. Longman Scientific and Techical, Harlow (1986)
[21] Jones, V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125(3), 459–467 (1989) · Zbl 0695.57003 · doi:10.1007/BF01218412
[22] Jones, V.F.R.: Notes on subfactors and statistical mechanics. Braid group, knot theory and statistical mechanics. In: Adv. Ser. Math. Phys., vol. 9, pp. 1–25. World Sci. Publ., Teaneck, NJ (1989)
[23] Larsen, M.J., Rowell, E.C.: An algebra-level version of a link-polynomial identity of Lickorish. Math. Proc. Camb. Philos. Soc. 144(3), 623–638 (2008) · Zbl 1154.57007 · doi:10.1017/S0305004107000424
[24] Larsen, M.J., Rowell, E.C., Wang, Z.: The N-eigenvalue problem and two applications. Int. Math. Res. Not. 2005(64), 3987–4018 (2005) · Zbl 1109.22008 · doi:10.1155/IMRN.2005.3987
[25] Müger, M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87(3), 291–308 (2003) · Zbl 1037.18005 · doi:10.1112/S0024611503014187
[26] Natale, S.: On group theoretical Hopf algebras and exact factorizations of finite groups. J. Algebra 270(1), 199–211 (2003) · Zbl 1040.16027 · doi:10.1016/S0021-8693(03)00464-2
[27] Nikshych, D.: Non group-theoretical semisimple Hopf algebras from group actions on fusion categories. Sel. Math. 14, 145–161 (2008) · Zbl 1177.16019 · doi:10.1007/s00029-008-0060-1
[28] Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003) · Zbl 1044.18004 · doi:10.1007/s00031-003-0515-6
[29] Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 2003(27), 1507–1520 (2003) · Zbl 1044.18005 · doi:10.1155/S1073792803205079
[30] Rowell, E.C.: From quantum groups to unitary modular tensor categories. Contemp. Math. 413, 215–230 (2006) · Zbl 1156.18302 · doi:10.1090/conm/413/07848
[31] Rowell, E.C.: Unitarizability of premodular categories. J. Pure Appl. Algebra 212(8), 1878–1887 (2008) · Zbl 1184.17007 · doi:10.1016/j.jpaa.2007.11.004
[32] Rowell, E.C.: Two paradigms for topological quantum computation. Contemp. Math. 482, 165–177 (2009) · Zbl 1171.81344 · doi:10.1090/conm/482/09418
[33] Rowell, E.C.: A quaternionic braid representation (after Goldschmidt and Jones) (2010). arXiv:1006.4808 · Zbl 1213.05018
[34] Rowell, E., Stong, R., Wang, Z.: On classification of modular tensor categories. Commun. Math. Phys. 292(2), 343–389 (2009) · Zbl 1186.18005 · doi:10.1007/s00220-009-0908-z
[35] Rowell, E.C., Tuba, I.: Finite linear quotients of $\(\backslash\)mathcal{B}_3$ of low dimension. J. Knot Theory Ramif. 19(5), 587–600 (2010) · Zbl 1192.20022 · doi:10.1142/S0218216510008005
[36] Siehler, J.A.: Braided Near-group Categories. math.QA/0011037 · Zbl 1033.18004
[37] Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209(2), 692–707 (1998) · Zbl 0923.46052 · doi:10.1006/jabr.1998.7558
[38] Turaev, V.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Walter de Gruyter (1994) · Zbl 0812.57003
[39] Turaev, V.: Crossed group-categories. Arab. J. Sci. Eng. 33(2C), 484–503 (2008) · Zbl 1185.18009
[40] Wenzl, H.: C* tensor categories from quantum groups. J. Am. Math. Soc. 11, 261–282 (1998) · Zbl 0888.46043 · doi:10.1090/S0894-0347-98-00253-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.