×

Unitarizability of premodular categories. (English) Zbl 1184.17007

Summary: We study the unitarizability of premodular categories constructed from representations of quantum group at roots of unity. We introduce Grothendieck unitarizability as a natural generalization of unitarizability to classes of premodular categories with a common Grothendieck semiring. We obtain new results for quantum groups of Lie types \(F_4\) and \(G_2\), and improve the previously obtained results for Lie types \(B\) and \(C\).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
20G42 Quantum groups (quantized function algebras) and their representations

References:

[1] Andersen, H. H.; Paradowski, J., Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys., 169, 563-588 (1995) · Zbl 0827.17010
[2] Bakalov, B.; Kirillov, A., (Lectures on Tensor Categories and Modular Functors. Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21 (2001), Amer. Math. Soc.) · Zbl 0965.18002
[3] Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. of Math. (2), 162, 2, 581-642 (2005) · Zbl 1125.16025
[4] Finkelberg, M., An equivalence of fusion categories, Geom. Funct. Anal., 6, 2, 249-267 (1996) · Zbl 0860.17040
[5] Freedman, M. H.; Kitaev, A.; Larsen, M. J.; Wang, Z., Topological quantum computation, Mathematical challenges of the 21st century (Los Angeles, CA, 2000), Bull. Amer. Math. Soc. (N.S.), 40, 1, 31-38 (2003) · Zbl 1019.81008
[6] Kac, V. G., Infinite-dimensional Lie algebras (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0574.17002
[7] Kassel, C., (Quantum Groups. Quantum Groups, Graduate Texts in Mathematics, vol. 155 (1995), Springer-Verlag: Springer-Verlag New York) · Zbl 0808.17003
[8] Kazhdan, D.; Wenzl, H., (Reconstructing monoidal categories. Reconstructing monoidal categories, I. M. Gelfand Seminar, 111-136, Adv. Soviet Math., vol. 16, Part 2 (1993), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0786.18002
[9] Kirillov, A., On an inner product in modular categories, J. Amer. Math. Soc., 9, 4, 1135-1169 (1996) · Zbl 0861.05065
[10] Ostrik, V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 2, 177-206 (2003) · Zbl 1044.18004
[11] Read, N.; Rezayi, E., Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level, Phys. Rev. B, 59, 8084 (1999)
[12] Rowell, E. C., On a family of non-unitarizable ribbon categories, Math. Z., 250, 4, 745-774 (2005) · Zbl 1137.17015
[13] Rowell, E. C., From quantum groups to unitary modular tensor categories, Contemp. Math., 413, 215-230 (2006) · Zbl 1156.18302
[14] Sawin, S. F., Quantum groups at roots of unity and modularity, J. Knot Theory Ramifications, 15, 10, 1245-1277 (2006) · Zbl 1117.17006
[15] J.R. Stembridge, Available at: http://www.math.lsa.umich.edu/ jrs/maple.html; J.R. Stembridge, Available at: http://www.math.lsa.umich.edu/ jrs/maple.html
[16] Tuba, I.; Wenzl, H., On braided tensor categories of type \(BCD\), J. Reine Angew. Math., 581, 31-69 (2005) · Zbl 1070.18003
[17] Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, vol. 18 (1994), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 0812.57003
[18] Wenzl, H. G., \(C^\ast\) tensor categories from quantum groups, J. Amer. Math. Soc., 11, 261-282 (1998) · Zbl 0888.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.