×

\(C^{*}\) tensor categories from quantum groups. (English) Zbl 0888.46043

Let \(\mathfrak g\) be a semisimple Lie algebra and let \(d\) be the ratio between the square of the lengths of a long and a short root. Moreover, let \(\mathcal F\) be the quotient category of the category of tilting modules of \(U_q\mathfrak g\) modulo the ideal of tilting modules with zero \(q\)-dimension for \(q=e^{\pm\pi i/dl}\). We show that for \(l\) a sufficiently large integer, the morphisms of \(\mathcal F\) are Hilbert spaces satisfying functorial properties. As an application, we obtain a subfactor of the hyperfinite \(\text{II}_1\) factor for each object of \(\mathcal F\).

MSC:

46L37 Subfactors and their classification
46L60 Applications of selfadjoint operator algebras to physics
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI

References:

[1] Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149 – 159. · Zbl 0760.17004
[2] Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563 – 588. · Zbl 0827.17010
[3] V. G. Drinfel\(^{\prime}\)d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798 – 820.
[4] V. G. Drinfel\(^{\prime}\)d, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30 – 46 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 321 – 342.
[5] David E. Evans and Yasuyuki Kawahigashi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), no. 3, 445 – 484. · Zbl 0805.46077
[6] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. · Zbl 0698.46050
[7] Frederick M. Goodman and Hans Wenzl, Littlewood-Richardson coefficients for Hecke algebras at roots of unity, Adv. Math. 82 (1990), no. 2, 244 – 265. · Zbl 0714.20004 · doi:10.1016/0001-8708(90)90090-A
[8] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. · Zbl 0254.17004
[9] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1 – 25. · Zbl 0508.46040 · doi:10.1007/BF01389127
[10] André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55 – 112. · Zbl 0738.18005 · doi:10.1016/0001-8708(91)90003-P
[11] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[12] M. Kashiwara, On crystal bases of the \?-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465 – 516. · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[13] Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. · Zbl 0808.17003
[14] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905 – 947, 949 – 1011. , https://doi.org/10.1090/S0894-0347-1993-1186962-0 D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no. 2, 335 – 381. , https://doi.org/10.1090/S0894-0347-1994-1239506-X D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), no. 2, 383 – 453.
[15] Alexander A. Kirillov Jr., On an inner product in modular tensor categories, J. Amer. Math. Soc. 9 (1996), no. 4, 1135 – 1169. · Zbl 0861.05065
[16] A. N. Kirillov and N. Reshetikhin, \?-Weyl group and a multiplicative formula for universal \?-matrices, Comm. Math. Phys. 134 (1990), no. 2, 421 – 431. · Zbl 0723.17014
[17] S. Z. Levendorskiĭ and Ya. S. Soĭbel\(^{\prime}\)man, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241 – 254. · Zbl 0729.17009 · doi:10.1016/0393-0440(90)90013-S
[18] R. Longo, J.E. Roberts, A theory of dimension, \(K\)-Theory, (to appear). · Zbl 0874.18005
[19] Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499 – 525. · Zbl 0858.17023 · doi:10.2307/2118553
[20] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0788.17010
[21] A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. · Zbl 0722.22004
[22] M. Pimsner, A class of Markov traces, preprint. · Zbl 0418.46058
[23] Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57 – 106. · Zbl 0646.46057
[24] S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19 – 43. · Zbl 0757.46054 · doi:10.1007/BF01231494
[25] Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427 – 445. · Zbl 0831.46069 · doi:10.1007/BF01241137
[26] V. Turaev and H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), no. 2, 323 – 358. · Zbl 0784.57007 · doi:10.1142/S0129167X93000170
[27] V. G. Turaev, H. Wenzl, Semisimple and modular tensor categories from link invariants, Math. Annalen 309 (1997), 411-461. · Zbl 0888.18001
[28] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. · Zbl 0812.57003
[29] Erik Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nuclear Phys. B 300 (1988), no. 3, 360 – 376. · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[30] Antony Wassermann, Coactions and Yang-Baxter equations for ergodic actions and subfactors, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 203 – 236. · Zbl 0809.46079
[31] Antony J. Wassermann, Operator algebras and conformal field theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 966 – 979. · Zbl 0854.46055
[32] A. Wassermann, Operator algebras and conformal field theory III (to appear). · Zbl 0944.46059
[33] Hans Wenzl, Hecke algebras of type \?_{\?} and subfactors, Invent. Math. 92 (1988), no. 2, 349 – 383. · Zbl 0663.46055 · doi:10.1007/BF01404457
[34] Hans Wenzl, Quantum groups and subfactors of type \?, \?, and \?, Comm. Math. Phys. 133 (1990), no. 2, 383 – 432. · Zbl 0744.17021
[35] F. Xu, Standard \(\lambda \)-lattices from quantum groups, preprint. · Zbl 0934.17013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.