×

Hopf algebra deformations of binary polyhedral groups. (English) Zbl 1238.16024

Let \(k\) be an algebraically closed field of characteristic zero. A polyhedral group \(G\) is a finite subgroup of \(\text{PSL}_2(k)\) which is isomorphic to one of the following: (1) A finite cyclic group; (2) the dihedral group \(D_n\) of order \(2n\), \(n\) at least 2; (3) the group of symmetries of the regular tetrahedon, of order 12; (4) the group of symmetries of the regular octahedron, of order 24; or (5) the group of symmetries of the regular icosahedron, of order 60. For such a \(G\), there is a subgroup \(G'\) of \(\text{SL}_2(k)\) such that \(G'/\{1,-1\}=G\). \(G'\) is called a binary polyhedral group.
Here are the two main theorems of the paper. Theorem 1.1: Let \(H\) be a cosemisimple finite-dimensional Hopf algebra over \(k\) which contains a simple subcoalgebra \(C\) of dimension 4. Then the subalgebra \(B=k[CS(C)]\) (\(S\) is the antipode of \(H\)) is a commutative Hopf subalgebra of \(H\) isomorphic to \(k^G\), where \(G\) is a noncyclic finite subgroup of \(\text{PSL}_2(k)\) of even order. Furthermore, let \(\chi\) be the irreducible character contained in \(C\), and let \(K[\chi]\) be the stabilizer of \(\chi\) in \(H\) with respect to left multiplication in \(H\). Then \(|K[\chi]|\) divides 4, and (1) If \(|K[\chi]|=4\), then \(B\) is isomorphic to \(k^{\mathbb Z_2\times\mathbb Z_2}\); (2) If \(|K[\chi]|=2\), then \(B\) is isomorphic to \(k^{D_n}\), \(n\) at least 3; (3) If \(|K[X\chi]|=1\), then \(B\) is isomorphic to either \(k^{A_4}\), \(k^{S_4}\) or \(k^{A_5}\). – Theorem 1.1 strengthens the description of \(H\) by W. D. Nichols and M. B. Richmond [J. Pure Appl. Algebra 106, No. 3, 297-306 (1996; Zbl 0848.16034)].
Theorem 1.2: Let \(H\) be a semisimple Hopf algebra over \(k\). Assume that \(H\) has an irreducible comodule \(V\) of dimension 2 (this is equivalent to \(H\) having a simple subcoalgebra of dimension 4) such that \(V\) is faithful and self-dual. Let \(i(V)=1\) or \(-1\) denote the Frobenius-Schur indicator of \(V\). Then (1) If \(i(V)=-1\), then \(H\) is commutative and is isomorphic to \(k^{G'}\), where \(G'\) is a nonabelian binary polyhedral group. (2) If \(i(V)=1\), then either \(H\) is commutative and isomorphic to \(k^{D_n}\), \(n\) at least 3, or \(H\) is isomorphic to a deformation of a binary polyhedral group which is either generalized quaternion or cyclic. – In this discussion, \(H\) is a finite-dimensional quotient Hopf algebra of the quantum group \(SL_q(2)\) with \(q=-1\).
The proof of Theorem 1.2 uses the classification of Hopf algebras associated to nondegenerate bilinear forms in the 2 by 2 case. Theorem 1.2 leads to an equivalence of the fusion categories \(\text{Rep\,}H\) and \((\text{Vec}^G)^{\mathbb Z_2}\), where \(\text{Vec}^G\) is the fusion category of \(G\)-graded vector spaces, and the \(\mathbb Z_2\) indicates the equivariantization of \(\text{Vec}^G\) with respect to an appropriate action of \(\mathbb Z_2\). [Note: For a group \(G\), \(k^G\) refers to the dual of the group algebra \(k[G]\).]

MSC:

16T05 Hopf algebras and their applications

Citations:

Zbl 0848.16034

References:

[1] N. Andruskiewitsch, J. Devoto, Extensions of Hopf algebras, Algebra Anal. 7 (1965), no.1, 22–61. · Zbl 0857.16032
[2] T. Banica, Le groupe quantique libre U(n), Comm. Math. Phys. 190 (1997), 143–172. · Zbl 0906.17009 · doi:10.1007/s002200050237
[3] T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763–780. · Zbl 0928.46038 · doi:10.1007/s002080050315
[4] T. Banica, J. Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 75–114. · Zbl 1187.46058 · doi:10.1515/CRELLE.2009.003
[5] J. Bichon, Cosovereign Hopf algebras, J. Pure Appl. Algebra 157 (2001), 121–133. · Zbl 0976.16027 · doi:10.1016/S0022-4049(00)00024-4
[6] J. Bichon, Cosemisimple Hopf algebras with antipode of arbitrary finite order, New York J. Math. 8 (2002), 235–240. · Zbl 1017.16029
[7] J. Bichon, The representation category of the quantum group of a nondegenerate bilinear form, Comm. Algebra 31 (2003), 4831–4851. · Zbl 1034.16042 · doi:10.1081/AGB-120023135
[8] J. Bichon, Corepresentation theory of universal cosovereign Hopf algebras, J. Lond. Math. Soc. 75 (2007), 83–98. · Zbl 1138.16018 · doi:10.1112/jlms/jdl007
[9] H. Coxeter, Regular Complex Polytopes, Cambride University Press, London, 1974. · Zbl 0296.50009
[10] A. A. Davydov, Galois algebras and monoidal functors between categories of representations of finite groups, J. Algebra 244 (2001), 273–301. · Zbl 1026.19003 · doi:10.1006/jabr.2001.8893
[11] M. Dijkhuizen, The double covering of the quantum group SO q (3), Rend. Circ. Mat. Palermo (2), Suppl., 37 (1994), 47–57. · Zbl 0833.17019
[12] M. Dubois-Violette, G. Launer, The quantum group of a nondegenerate bilinear form, Phys. Lett. B 245 (1990), 175–177. · Zbl 1119.16307 · doi:10.1016/0370-2693(90)90129-T
[13] P. Etingof, S. Gelaki, The representation theory of cotriangular semisimple Hopf algebras, Int. Math. Res. Not. 1999 (1999), no. 7, 387–394. · Zbl 0933.16039 · doi:10.1155/S1073792899000197
[14] P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. of Math. (2) 162(2005), 581–642. · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[15] P. Etingof, D. Nikshych, V. Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011), 176–205. · Zbl 1210.18009 · doi:10.1016/j.aim.2010.06.009
[16] Л. Фаддеев, H. Peшeтихин, Л. Taхтaджян, Kвaнmoвaнue pynn Лu u aпeбp Лu, Лeнингp. мaт. жypн 1 (1990), 193–225. Engl. transl.: L. Faddeev, N. Reshetikhin, L. Takhtadzhyan, Quantization of Lie groups and Lie algebras, Algebra Anal. 1 (1989), no.1, 178–206.
[17] C. Galindo, S. Natale, Simple Hopf algebras and deformations of finite groups, Math. Res. Lett. 14 (2007), 943–954. · Zbl 1160.16020 · doi:10.4310/MRL.2007.v14.n6.a4
[18] S. Gelaki, D. Nikshych, Nilpotent fusion categories, Adv. Math. 217 (2008), 1053–1071. · Zbl 1168.18004 · doi:10.1016/j.aim.2007.08.001
[19] M. Izumi, H. Kosaki, Kac Algebras Arising from Composition of Subfactors: General Theory and Classification, Mem. Amer. Math. Soc., Vol. 158, 2002, no. 750. · Zbl 1001.46040
[20] Г. И. Кaц, Pacwupeнuя pynn, явпяющuecя pynnoвымu кoпьцaмu, Maт. cб. 76(118) (1968), no. 3, 473{496. Engl. transl: G. Kac, Extensions of groups to ring groups, Math. USSR. Sb. 5 (1968), no. 3, 451–474.
[21] Y. Kashina, Classification of semisimple Hopf algebras of dimension 16, J. Algebra 232 (2000), 617–663. · Zbl 0969.16014 · doi:10.1006/jabr.2000.8409
[22] Y. Kashina, Y. Sommerhäuser, Y. Zhu, On Higher Frobenius-Schur Indicators, Mem. Amer. Math. Soc., Vol. 855, 2006, no. 855. · Zbl 1163.16029
[23] G. Karpilovsky, Projective Representations of Finite Groups, Pure and Applied Mathematics, Vol. 94, Marcel Dekker, New York, 1985. · Zbl 0568.20016
[24] A. Klimyk, K. Schmüdgen, Quantum Groups and their Representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
[25] R. Larson, D. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), 187–195. · Zbl 0637.16006 · doi:10.2307/2374545
[26] V. Linchenko, S. Montgomery, A Frobenius-Schur theorem for Hopf algebras, Alg. Represent. Theory 3 (2000), 347–355. · Zbl 0971.16018 · doi:10.1023/A:1009949909889
[27] M. Mastnak, Hopf algebra extensions arising from semi-direct products, J. Algebra 251 (2002), 413–434. · Zbl 1010.16040 · doi:10.1006/jabr.2002.9145
[28] A. Masuoka, Faithfully at forms and cohomology of Hopf algebra extensions, Comm. Algebra 25 (1997), 1169–1197. · Zbl 0882.16026 · doi:10.1080/00927879708825915
[29] A. Masuoka, Extensions of Hopf algebras, Trab. Mat. 41/99, FaMAF, 1999. · Zbl 0942.16043
[30] A. Masuoka, Hopf algebra extensions and cohomology, in: New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 167–209. · Zbl 1011.16024
[31] A. Masuoka, Cocycle deformations and Galois objects for some co-semisimple Hopf algebras of finite dimension, Contemp. Math. 267 (2000), 195–214. · Zbl 0985.16025 · doi:10.1090/conm/267/04271
[32] S. Montgomery, S. Whiterspoon, Irreducible representations of crossed products, J. Pure Appl. Algebra 129 (1998), 315–326. · Zbl 0932.16039 · doi:10.1016/S0022-4049(97)00077-7
[33] M. Mовшeв, Cкpyчuвaнue в pynnовыx aпeбpax конeчныx pynn, {\(\Phi\)}yнкц. aнaли3 и eгo пpил. 27 (1993), no. 4, 17–23. Engl. transl.: M. Movshev, Twisting in group algebras of finite groups, Funct. Anal. Appl. 27 (1993), no. 4, 240–244.
[34] S. Natale, On semisimple Hopf algebras of dimension pq 2, J. Algebra 221 (1999), 242–278. · Zbl 0942.16045 · doi:10.1006/jabr.1999.7968
[35] S. Natale, Hopf algebras of dimension 12, Alg. Reprsent. Theory 5 (2002), 445–455. · Zbl 1020.16030 · doi:10.1023/A:1020504123567
[36] S. Natale, Semisolvability of Semisimple Hopf Algebras of Low Dimension, Mem. Amer. Math. Soc., Vol. 186, 2007, no. 874. · Zbl 1185.16033
[37] S. Natale, Hopf algebra extensions of group algebras and Tambara-Yamagami categories, Alg. Represent. Theory 13 (2010), 673–691. · Zbl 1228.16033 · doi:10.1007/s10468-009-9168-z
[38] W. Nichols, M. Richmond, The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra 106 (1996), 297–306. · Zbl 0848.16034 · doi:10.1016/0022-4049(95)00023-2
[39] W. Nichols, M. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), 381–385. · Zbl 0672.16006 · doi:10.2307/2374514
[40] D. Nikshych, K 0-rings and twisting of finite-dimensional semisimple Hopf algebras, Comm. Algebra 26 (1998), 321–342. · Zbl 0912.16018 · doi:10.1080/00927879808826132
[41] P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), 193–202. · Zbl 0634.46054 · doi:10.1007/BF00416848
[42] P. Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170 (1995), 1–20. · Zbl 0853.46074 · doi:10.1007/BF02099436
[43] D. Radford, On an analog of Lagrange’s theorem for commutative Hopf algebras, Proc. Amer. Math. Soc. 79 (1980), 164–166. · Zbl 0438.16003
[44] H.-J. Schneider, Some remarks on exact sequences of quantum groups, Comm. Algebra 21 (1993), 3337–3357. · Zbl 0801.16040 · doi:10.1080/00927879308824733
[45] D. Stefan, Hopf algebras of low dimension, J. Algebra 211 (1999), 343–361. · Zbl 0918.16031 · doi:10.1006/jabr.1998.7602
[46] R. Stekolshchik, Notes on Coxeter Transformations and the McKay Correspondence, Springer Monographs in Mathematics, Springer, Berlin, 2008. · Zbl 1202.20045
[47] M. Suzuki, Group Theory, I, Springer-Verlag, Berlin, 1982. · Zbl 0472.20001
[48] K. Tahara, On the second cohomology groups of semi-direct products, Math. Z. 129 (1972), 365–379. · doi:10.1007/BF01181625
[49] M. Takeuchi, Quantum orthogonal and symplectic grops and their embedding into quantum GL, Proc. Japan Acad. Ser. A 65 (1989), 55–58. · Zbl 0694.16009 · doi:10.3792/pjaa.65.55
[50] M. Takeuchi, q-representations of quantum groups, CMS Conf. Proc. 16 (1995), 347–385. · Zbl 0846.17009
[51] S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671–692. · Zbl 0838.46057 · doi:10.1007/BF02101540
[52] W. Waterhouse, The module structure of certain Hopf algebra extensions, Commun. Algebra 10 (1982), 115–120. · Zbl 0478.16004 · doi:10.1080/00927878208822706
[53] S. Zhu, On finite-dimensional Hopf algebras, Comm. Algebra 21 (1993), 3871–3885. · Zbl 0802.16037 · doi:10.1080/00927879308824771
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.