×

Nehari manifold approach for superlinear double phase problems with variable exponents. (English) Zbl 1541.35261

The manuscript deals with the existence and multiplicity of weak solutions to the following double phase problem \[ \begin{cases}- \Delta_{p(z)}^1 u(z) - \Delta_{q(z)}^{\mu(z)} u(z) =f(z,u(z)) \quad \mbox{in } \Omega, &\\ u=0 \quad \mbox{on }\partial \Omega, &\end{cases} \] where \(\Omega \subseteq \mathbb{R}^N\) is a bounded domain with a Lipschitz boundary \(\partial \Omega\), and the authors impose a Dirichlet boundary condition. Given \(r \in C(\overline{\Omega})\) with \(1<r(z)\) for all \(z \in \overline{\Omega}\), by \(\Delta_{r(z)}^{\mu(z)}\) we denote the following weighted differential operator \[ \Delta_{r(z)}^{\mu(z)} u=\mathrm{div } [\mu(z)|\nabla u|^{r(z)-2}\nabla u] \quad \mbox{for all } u \in W^{1,r(z)}(\Omega), \] with \(0 \leq \mu(\cdot) \in L^\infty(\Omega)\). When \(\mu \equiv 1\) we write \(\Delta_{r(z)}^1\). In the above problem, the differential operator is the sum of two such operators (double phase problem). The authors work in the variable exponents setting, hence pose the problem in an appropriate Musielak-Orlicz Sobolev space. The exponents \(p,q\) are properly linked each other and also fulfil suitable conditions. The reaction (right hand side) has superlinear type growth at zero and infinity, and satisfies certain technical conditions.
The authors first obtain a priori bounds for weak solutions to a class of suitable general problems, then prove the existence of a positive and a negative weak solution to the above double phase problem via the mountain pass theorem, involving auxiliary functionals truncated at zero. Further, they obtain the existence of a sign-changing solution to the above double phase problem, by solving a minimization problem on a modified version of the Nehari manifold.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations

References:

[1] Aberqi, A.; Bennouna, J.; Benslimane, O.; Ragusa, MA, Existence results for double phase problem in Sobolev-Orlicz spaces with variable exponents in complete manifold, Mediterr. J. Math., 19, 4, 158, 2022 · Zbl 1491.35202
[2] Albalawi, KS; Alharthi, NH; Vetro, F., Gradient and parameter dependent Dirichlet (p(x), q(x))-Laplace type problem, Mathematics, 10, 8, 1336, 2022
[3] Bahrouni, A.; Rădulescu, VD; Winkert, P., Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71, 6, 183, 2020 · Zbl 1454.35179
[4] Baroni, P.; Colombo, M.; Mingione, G., Harnack inequalities for double phase functionals, Nonlinear Anal., 121, 206-222, 2015 · Zbl 1321.49059
[5] Baroni, P.; Colombo, M.; Mingione, G., Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27, 347-379, 2016 · Zbl 1335.49057
[6] Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, 48, 2018 · Zbl 1394.49034
[7] Beck, L.; Mingione, G., Lipschitz bounds and nonuniform ellipticity, Comm. Pure Appl. Math., 73, 5, 944-1034, 2020 · Zbl 1445.35140
[8] Beck, L.; Mingione, G., Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems, Atti Accad, Naz. Lincei Rend. Lincei Mat. Appl., 30, 2, 223-236, 2019 · Zbl 1471.49024
[9] Biagi, S.; Esposito, F.; Vecchi, E., Symmetry and monotonicity of singular solutions of double phase problems, J. Differ. Equ., 280, 435-463, 2021 · Zbl 1471.35010
[10] Colasuonno, F.; Squassina, M., Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195, 6, 1917-1959, 2016 · Zbl 1364.35226
[11] Colombo, M.; Mingione, G., Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218, 1, 219-273, 2015 · Zbl 1325.49042
[12] Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 2, 443-496, 2015 · Zbl 1322.49065
[13] Crespo-Blanco, Á.; Gasiński, L.; Harjulehto, P.; Winkert, P., A new class of double phase variable exponent problems: existence and uniqueness, J. Differ. Equ., 323, 182-228, 2022 · Zbl 1489.35041
[14] De Filippis, C.; Mingione, G., Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal., 242, 973-1057, 2021 · Zbl 1483.49050
[15] Dinca, G., Mawhin, J.: “Brouwer Degree”, Birkhäuser Basel, (2021)
[16] Diening, L., Harjulehto, P., Hästö, P., R \(\mathring{\text{u}}\) žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Heidelberg (2011) · Zbl 1222.46002
[17] Fan, X.; Shen, J.; Zhao, D., Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\), J. Math. Anal. Appl., 262, 2, 749-760, 2001 · Zbl 0995.46023
[18] Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302, 2, 306-317, 2005 · Zbl 1072.35138
[19] Fan, X.; Zhao, D., On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\), J. Math. Anal. Appl., 263, 2, 424-446, 2001 · Zbl 1028.46041
[20] Farkas, C.; Winkert, P., An existence result for singular Finsler double phase problems, J. Differ. Equ., 286, 455-473, 2021 · Zbl 1465.35148
[21] Fiscella, A., A double phase problem involving Hardy potentials, Appl. Math. Optim., 85, 3, 45, 2022 · Zbl 1498.35270
[22] Gasiński, L.; Papageorgiou, NS, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14, 4, 613-626, 2021 · Zbl 1478.35118
[23] Gasiński, L.; Winkert, P., Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195, 2020 · Zbl 1437.35233
[24] Gasiński, L.; Winkert, P., Existence and uniqueness results for double phase problems with convection term, J. Differ. Equ., 268, 8, 4183-4193, 2020 · Zbl 1435.35172
[25] Gasiński, L.; Winkert, P., Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differ. Equ., 274, 1037-1066, 2021 · Zbl 1458.35149
[26] Ge, B.; Pucci, P., Quasilinear double phase problems in the whole space via perturbation methods, Adv. Differ. Equ., 27, 1-2, 1-30, 2022 · Zbl 1486.35205
[27] Hästö, P.; Ok, J., Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc., 24, 4, 1285-1334, 2022 · Zbl 1485.49044
[28] Ho, K.; Kim, Y-H; Winkert, P.; Zhang, C., The boundedness and Hölder continuity of weak solutions to elliptic equations involving variable exponents and critical growth, J. Differ. Equ., 313, 503-532, 2022 · Zbl 1483.35054
[29] Ho, K., Winkert, P.: New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems, preprint, arXiv:2208.00504, (2022)
[30] Ho, K.; Winkert, P., Infinitely many solutions to Kirchhoff double phase problems with variable exponents, Appl. Math. Lett., 145, 108783, 2023 · Zbl 1533.35151
[31] Kim, IH; Kim, Y-H; Oh, MW; Zeng, S., Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal. Real World Appl., 67, 103627, 2022 · Zbl 1492.35124
[32] Leonardi, S.; Papageorgiou, NS, Anisotropic Dirichlet double phase problems with competing nonlinearities, Rev. Mat. Complut., 36, 2, 469-490, 2023 · Zbl 1514.35240
[33] Liu, W.; Dai, G., Existence and multiplicity results for double phase problem, J. Differ. Equ., 265, 9, 4311-4334, 2018 · Zbl 1401.35103
[34] Lieberman, GM, The natural generalization of the natural conditions of Ladyzhenskaya and \(Ural^{\prime }\) tseva for elliptic equations, Comm. Partial Differ. Equ., 16, 2-3, 311-361, 1991 · Zbl 0742.35028
[35] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105, 3, 267-284, 1989 · Zbl 0667.49032
[36] Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions, J. Differ. Equ., 90, 1, 1-30, 1991 · Zbl 0724.35043
[37] Nehari, Z., On a class of nonlinear second-order differential equations, Trans. Am. Math. Soc., 95, 101-123, 1960 · Zbl 0097.29501
[38] Nehari, Z., Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105, 141-175, 1961 · Zbl 0099.29104
[39] Papageorgiou, NS; Rădulescu, VD; Repovš, DD, Nonlinear Analysis-Theory and Methods, 2019, Cham: Springer, Cham · Zbl 1414.46003
[40] Papageorgiou, NS; Rădulescu, VD; Repovš, DD, Double-phase problems and a discontinuity property of the spectrum, Proc. Am. Math. Soc., 147, 7, 2899-2910, 2019 · Zbl 1423.35289
[41] Papageorgiou, NS; Winkert, P., Applied Nonlinear Functional Analysis: An Introduction, 2018, Berlin: De Gruyter, Berlin · Zbl 1404.46001
[42] Perera, K.; Squassina, M., Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20, 2, 1750023, 2018 · Zbl 1379.35152
[43] Pucci, P.; Serrin, J., The Maximum Principle, 2007, Basel: Birkhäuser Verlag, Basel · Zbl 1134.35001
[44] Ragusa, MA; Tachikawa, A., Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9, 1, 710-728, 2020 · Zbl 1420.35145
[45] Stegliński, R., Infinitely many solutions for double phase problem with unbounded potential in \({\mathbb{R} }^N \), Nonlinear Anal., 214, 112580, 2022 · Zbl 1479.35433
[46] Szulkin, A., Weth, T.: The method of Nehari manifold, in: “Handbook of Nonconvex Analysis and Applications”, Int. Press, Somerville, MA, pp.597-632 (2010) · Zbl 1218.58010
[47] Vetro, F.; Winkert, P., Constant sign solutions for double phase problems with variable exponents, Appl. Math. Lett., 135, 2023 · Zbl 1500.35123
[48] Willem, M.: “Minimax Theorems”, Birkhäuser, (1996) · Zbl 0856.49001
[49] Zeng, S.; Bai, Y.; Gasiński, L.; Winkert, P., Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differ. Equ., 59, 5, 176, 2020 · Zbl 1453.35070
[50] Zeng, S.; Rădulescu, VD; Winkert, P., Double phase obstacle problems with variable exponent, Adv. Differ. Equ., 27, 9-10, 611-645, 2022 · Zbl 1497.35146
[51] Zhikov, VV, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 675-710, 1986
[52] Zhikov, VV, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269, 1995 · Zbl 0910.49020
[53] Zhikov, VV, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173, 5, 463-570, 2011 · Zbl 1279.49005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.