×

Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent. (English) Zbl 1492.35124

Summary: This paper is devoted to the study of the \(L^\infty\)-bound of solutions to the double-phase nonlinear problem with variable exponent by the case of a combined effect of concave-convex nonlinearities. The main tools are the De Giorgi iteration method and a truncated energy technique. Applying this and a variant of Ekeland’s variational principle, we give the existence of at least two distinct nontrivial solutions belonging to \(L^\infty\)-space when the condition on a nonlinear convex term does not assume the Ambrosetti-Rabinowitz condition in general. In addition, our problem admits a sequence of small energy solutions whose converge to zero in \(L^\infty\) space. To achieve this result, we apply the modified functional method and global variational formulation as the main tools.

MSC:

35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Baroni, P.; Colombo, M.; Mingione, G., Harnack inequalities for double phase functionals, Nonlinear Anal., 121, 206-222 (2015) · Zbl 1321.49059
[2] Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57, 62 (2018) · Zbl 1394.49034
[3] Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 443-496 (2015) · Zbl 1322.49065
[4] Colombo, M.; Mingione, G., Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218, 219-273 (2015) · Zbl 1325.49042
[5] Cencelj, M.; Radulescu, V. D.; Repovs, D., Double phase problems with variable growth, Nonlinear Anal., 177, 270-287 (2018) · Zbl 1421.35235
[6] Colasuonno, F.; Squassina, M., Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195, 1917-1959 (2016) · Zbl 1364.35226
[7] Crespo-Blanco, Á.; Gasiński, L.; Harjulehto, P.; Winkert, P., A new class of double phase variable exponent problems: Existence and uniqueness (2021), Preprint arXiv:2103.08928
[8] Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \(( p , q )\) growth, J. Differential Equations, 204, 5-55 (2004) · Zbl 1072.49024
[9] De Filippis, C.; Palatucci, G., Hölder regularity for nonlocal double phase equations, J. Differential Equations, 267, 547-586 (2019) · Zbl 1412.35041
[10] Gasiński, L.; Papageorgiou, N. S., Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14, 4, 613-626 (2021) · Zbl 1478.35118
[11] Gasiński, L.; Winkert, P., Existence and uniqueness results for double phase problems with convection term, J. Differential Equations, 268, 8, 4183-4193 (2020) · Zbl 1435.35172
[12] Gasiński, L.; Winkert, P., Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195, Article 111739 pp. (2020) · Zbl 1437.35233
[13] Liu, W.; Dai, G., Existence and multiplicity results for double phase problem, J. Differential Equations, 265, 4311-4334 (2018) · Zbl 1401.35103
[14] Mingione, G.; Rădulescu, V. D., Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501, 1, Article 125197 pp. (2021), 41 · Zbl 1467.49003
[15] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D., Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc., 147, 7, 2899-2910 (2019) · Zbl 1423.35289
[16] Zeng, S.; Bai, Y.; Gasiński, L.; Winkert, P., Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 59, 5, 176 (2020) · Zbl 1453.35070
[17] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D., Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys., 69, 108 (2018) · Zbl 1404.35214
[18] Perera, K.; Squassina, M., Existence results for double-phase problems via morse theory, Commun. Contemp. Math., 20, Article 1750023 pp. (2018) · Zbl 1379.35152
[19] Rădulescu, V. D., Isotropic and anisotropic double-phase problems: old and new, Opuscula Math., 39, 259-279 (2019) · Zbl 1437.35315
[20] Zhang, Q. H.; Rădulescu, V. D., Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl., 118, 159-203 (2018) · Zbl 1404.35191
[21] Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat., 50, 675-710 (1986)
[22] Zhikov, V. V., On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 249-269 (1995) · Zbl 0910.49020
[23] Zhikov, V. V., On some variational problems, Russ. J. Math. Phys., 5, 105-116 (1997) · Zbl 0917.49006
[24] Zhikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer: Springer Berlin · Zbl 0838.35001
[25] Marcellini, P., Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105, 267-284 (1989) · Zbl 0667.49032
[26] Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p , q\)-growth conditions, J. Differential Equations, 90, 1-30 (1991) · Zbl 0724.35043
[27] Liu, W. L.; Dai, G. W., Three ground state solutions for double phase problem, J. Math. Phys., 59, Article 121503 pp. (2018) · Zbl 1414.35084
[28] Ge, B.; Wang, L.-Y.; Lu, J.-F., On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions, Appl. Anal., 100, 1-16 (2021)
[29] Bae, J.-H.; Kim, Y.-H., Critical points theorems via the generalized Ekeland variational principle and its application to equations of \(p ( x )\)-Laplace type in \(\mathbb{R}^N\), Taiwanese J. Math., 23, 193-229 (2019) · Zbl 1409.58004
[30] Brändle, C.; E. Colorado, E.; de Pablo, A.; Sánchez, U., A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 143, 39-71 (2013) · Zbl 1290.35304
[31] Chen, W.; Deng, S., The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities, Z. Angew. Math. Phys., 66, 1387-1400 (2015) · Zbl 1321.35253
[32] Carvalho, M. L.M.; da Silva, E. D.; Goulart, C., Quasilinear elliptic problems with concave-convex nonlinearities, Commun. Contemp. Math., 19, Article 1650050 pp. (2017) · Zbl 1376.35069
[33] Ho, K.; Sim, I., Existence and muliplicity of solutions for degenerate \(p ( x )\)-Laplace equations involving concave-convex type nonlinearities with two parameters, Taiwanese J. Math., 19, 1469-1493 (2015) · Zbl 1360.35076
[34] Kim, I. H.; Kim, Y.-H.; Park, K., Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional \(p ( \cdot )\)-Laplacian in \(\mathbb{R}^N\), Bound. Value Probl., 121, 1-24 (2020) · Zbl 1489.35110
[35] Wu, T.-F., Multiple positive solutions for a class of concave-convex elliptic problems in \(\mathbb{R}^N\) involving sign-changing weight, J. Funct. Anal., 258, 99-131 (2010) · Zbl 1182.35119
[36] Xiang, M.; Zhang, B.; Ferrara, M., Multiplicity results for the non-homogeneous fractional \(p\)-Kirchhoff equations with concave-convex nonlinearities, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 471, Article 20150034 pp. (2015) · Zbl 1371.35332
[37] Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122, 519-543 (1994) · Zbl 0805.35028
[38] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[39] Heinz, H. P., Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations, 66, 263-300 (1987) · Zbl 0607.34012
[40] Vergara, V.; Zacher, R., A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 73, 3572-3585 (2010) · Zbl 1205.45011
[41] Miyagaki, O. H.; Souto, M. A.S., Superlinear problems without ambrosetti and rabinowitz growth condition, J. Differential Equations, 245, 3628-3638 (2008) · Zbl 1158.35400
[42] Choi, E. B.; Kim, J.-M.; Kim, Y.-H., Infinitely many solutions for equations of \(p ( x )\)-Laplace type with the nonlinear Neumann boundary condition, Proc. Roy. Soc. Edinburgh Sect. A, 148, 1-31 (2018) · Zbl 1391.35163
[43] Juárez Hurtado, E.; Miyagaki, O. H.; Rodrigues, R. S., Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dyn. Diff. Equ., 30, 405-432 (2018) · Zbl 1400.35126
[44] Oanh, B. T.K.; Phuong, D. N., On multiplicity solutions for a non-local fractional \(p\)-Laplace equation, Complex Var. Elliptic Equ., 65, 801-822 (2020) · Zbl 1436.35165
[45] Tan, Z.; Fang, F., On superlinear \(p ( x )\)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 75, 3902-3915 (2012) · Zbl 1241.35047
[46] Bartsch, T.; Willem, M., On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123, 3555-3561 (1995) · Zbl 0848.35039
[47] Teng, K., Multiple solutions for a class of fractional Schrödinger equations in \(\mathbb{R}^N\), Nonlinear Anal. RWA, 21, 76-86 (2015) · Zbl 1302.35415
[48] Wang, Z.-Q., Nonlinear boundary value problems with concave nonlinearities near the origin, Nonlinear Differential Equations Appl., 8, 15-33 (2001) · Zbl 0983.35052
[49] Guo, Z., Elliptic equations with indefinite concave nonlinearities near the origin, J. Math. Anal. Appl., 367, 273-277 (2010) · Zbl 1187.35086
[50] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., (Lebesgue and Sobolev Spaces with Variable Exponents. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 (2011), Springer-Verlag: Springer-Verlag Heidelberg) · Zbl 1222.46002
[51] Fan, X.; Zhao, D., On the spaces \(L^{p ( x )} ( \Omega )\) and \(W^{m , p ( x )} ( \Omega )\), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041
[52] Kováčik, O.; Rákosník, J., On spaces \(L^{p ( x )}\) and \(W^{k , p ( x )}\), Czechoslovak Math. J., 41, 592-618 (1991) · Zbl 0784.46029
[53] Ho, K.; Sim, I., Existence and some properties of solutions for degenerate elliptic equations with exponent variable, Nonlinear Anal., 98, 146-164 (2014), Corrigendum to Existence and some properties of solutions for degenerate elliptic equations with exponent variable[Nonlinear Anal. 98 (2014) 146-164], Nonlinear Anal. 128 (2015) 423-426 · Zbl 1286.35117
[54] Ho, K.; Kim, Y.-H.; Winkert, P.; Zhang, C., The boundedness and Hölder continuity of solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations, 313, 503-532 (2022) · Zbl 1483.35054
[55] Winkert, P.; Zacher, R., A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S, 5, 4, 865-878 (2012) · Zbl 1261.35061
[56] Winkert, P.; Zacher, R., Corrigendum to A priori bounds for weak solutions to elliptic equations with nonstandard growth discrete contin, Dyn. Syst. Ser. S, 5, 865-878 (2012), Discrete Contin. Dyn. Syst. Ser. S, published on-line as note, (2015) 1-3, https://arxiv.org/abs/1102.1646 · Zbl 1261.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.