×

On variational problems and nonlinear elliptic equations with nonstandard growth conditions. (English. Russian original) Zbl 1279.49005

J. Math. Sci., New York 173, No. 5, 463-570 (2011); translation from Probl. Mat. Anal. 54, 23-112 (2011).
Summary: We study elliptic problems where the boundedness condition is “separated” from the coercivity condition, which leads to the loss of uniqueness, regularity, and some other properties of solutions. We propose new methods allowing us to establish existence results for such problems, in particular, in situations where a weak solution to the Dirichlet problem is not unique and the energy equality fails. We develop a special techniques of the weak convergence of fluxes to a flux owing to which it is possible to pass to the limit in nonlinear terms. Based on this technique, we establish the solvability of the well-known thermistor problem without any restrictions on the spatial dimension and smallness of the data. Various model examples and counterexamples are also given. The bibliography contains 72 titles.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49J45 Methods involving semicontinuity and convergence; relaxation
35J60 Nonlinear elliptic equations
Full Text: DOI

References:

[1] O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1964); English transl.: Academic Press, New York etc. (1968).
[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (2001). · Zbl 1042.35002
[3] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications Academic Press, New York etc. (1980). · Zbl 0457.35001
[4] B. V. Bojarski, ”Generalized solutions of a system of first order differential equations of elliptic type with discontinuous coefficients” [in Russian], Mat. Sb. 43, No. 4, 451–503 (1957).
[5] N. G. Meyers, ”An L p -estimate for the gradient of solution of second order elliptic divergence equations,” Ann. Scuola Norm. Super. Pisa 17, 185–206 (1963). · Zbl 0127.31904
[6] F. W. Gehring, ”The L p -integrability of the partial derivatives of a quasiconformal mapping,” Acta Math. 130, 265–277 (1973). · Zbl 0258.30021 · doi:10.1007/BF02392268
[7] M. Giaquinta and G. Modica, ”Regularity results for some classes of higher order nonlinear elliptic systems,” J. Reine Angew. Math. 311/312, 145–169 (1979). · Zbl 0409.35015
[8] V. V. Zhikov, ”Questions of convergence, duality, and averaging for a certain class of functionals in variational calculus” [in Russian], Dokl. Akad. Nauk SSSR 267, NO. 3, 524–528 (1982); English transl.: Sov. Math., Dokl. 26, 627–630 (1982). · Zbl 0555.40003
[9] V. V. Zhikov, ”Averaging of functionals of the calculus of variations and elasticity theory.” [in Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 50, No. 4, 675–710 (1986); English transl.: Math. USSR, Izv. 29, No. 1, 33–66 (1987).
[10] M. Giaquinta, ”Growth conditions and regularity, a counterexample,” Manuscripta Math. 59, 245–248 (1987). · Zbl 0638.49005 · doi:10.1007/BF01158049
[11] P. Marcellini, ”Un exemple de solution discontinue d’un probleme variationnel dans le cas scalaire,” Preprint Dip. Mat. ”U. Dini,” Univ, Firenze 11 (1987).
[12] D. Edmunds and J. Rakoshik, ”Sobolev embeddings with variable exponent,” Studia Math. 143, No. 3, 267–293 (2000). · Zbl 0974.46040
[13] X. Fan, J. Shen, and D. Zhao, ”Sobolev embedding theorems for W k,p({\(\cdot\)}),” J. Math. Anal. 262, No. 2, 749–760 (2001). · Zbl 0995.46023 · doi:10.1006/jmaa.2001.7618
[14] V. V. Zhikov, ”Lavrentiev phenomenon and homogenization for some variational problems,” In: Proc. Second Workshop ”Composite Media and Homogenization Theory”, World Scientific (1995). · Zbl 0783.35005
[15] V. V. Zhikov, ”On Lavrentiev’s Phenomenon,” Russian J. Math. Phys. 3, 249–269 (1995). · Zbl 0910.49020
[16] V. V. Zhikov, ”On Lavrent’ev’s effect” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 345, No. 1, 10–14 (1995); English transl.: Dokl. Math. 52, No. 3, 325–329 (1995). · Zbl 0919.49010
[17] V. V. Zhikov, ”On some variational problems,” Russian J. Math. Phys. 5, No. 1, 105–116 (1997). · Zbl 0917.49006
[18] V. V. Zhikov, ’ ”Meyers type estimates for the solution of a nonlinear Stokes system” [in Russian], Differ. Uravn. 33, No. 1, 108–115 (1997); Differ. Equations 33, No. 1, 108–115 (1997). · Zbl 0911.35089
[19] X. Fan, A Class of De Giorgi Type and Hölder Continuity of Minimizers of Variational with m(x)-Growth Condition, China Lanzhou Univ. (1995).
[20] Yu. A. Alkhutov, ”The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition” [in Russian], Differ. Uravn. 33, No. 12, 1651–1660 (1997); English transl.: Differ. Equations 33, No. 12, 1653–1663 (1997). · Zbl 0949.35048
[21] Yu. A. Alkhutov and O. V. Krasheninnikova, ”Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition” [in Russian], Izv. Ross. Akad. Nauk, Ser. Mat. 68, No. 6, 3–60 (2004); English transl.: Izv. Math. 68, No. 6, 1063–1117 (2004). · Zbl 1167.35385
[22] O. V. Krasheninnikova, ”Continuity at a point for solutions to elliptic equations with a nonstandard growth condition” [in Russian], Tr. Mat. Inst. Steklova 236, 204–211 (2002); English transl.: Proc. Steklov Inst. Math. 236, 193–200 (2002). · Zbl 1125.35347
[23] E. Acerby and G. Mingione, ”Regularity results for a class of functionals with nonstandard growth,” Arch. Ration. Mech. Anal. 156, 121–140 (2001). · Zbl 0984.49020 · doi:10.1007/s002050100117
[24] E. Acerby and G. Mingione, ”Regularity results for stationary electro-rheological liquids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002). · Zbl 1038.76058 · doi:10.1007/s00205-002-0208-7
[25] S. N. Antontsev and J. F. Rodrigues, ”On stationary thermo-rheollogical viscous flows,” Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52, No. 1, 19–36 (2006). · Zbl 1117.76004 · doi:10.1007/s11565-006-0002-9
[26] V. V. Zhikov and S. E. Pastukhova, ”Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent” [in Russian], Mat. Sb. 199, No. 12, 19–52 (2008); English transl.: Sb. Math. 199, No. 12, 1751–1782 (2008). · Zbl 1172.35024
[27] S. N. Antontsev and S. I. Shmarev, ”Elliptic equations and systems with nonstandard growth conditions existence, uniqueness and localization properties of solutions,” J. Nonlinear Anal. 65, 728–761 (2006). · Zbl 1245.35033 · doi:10.1016/j.na.2005.09.035
[28] S. N. Antontsev and S. I. Shmarev, ”Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions,” In: Stationary Partial Differential Equations Vol. 3, pp. 1–100. Elsevier, Amsterdam (2006). · Zbl 1192.35047
[29] V. V. Zhikov, ”Remarks on the uniqueness of a solution of the Dirichlet problem for secondorder elliptic equations with lower-order terms” [in Russian], Funkts. Anal. Prilozh. 38, No. 3, 15–28 (2004); English transl.: Funct. Anal. Appl. 38, No. 3, 173–183 (2004).
[30] K. R. Rajagopal and M. Ruzicka, ”Om the modeling of electrorheological materials,” Mech. Res. Commun. 23, 401–407 (1996). · Zbl 0890.76007 · doi:10.1016/0093-6413(96)00038-9
[31] M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer, Berlin (2000).
[32] J.-L. Lions, Quelques Méthods de Résolution des Problèmes aux Limites. Non- Lineares, Dunod, Paris (1969).
[33] P. Billingsley, Convergence of Probability Measures New York-London-Sydney-Toronto: John Wiley and Sons, New York etc. (1968). · Zbl 0172.21201
[34] V. V. Zhikov and S. E. Pastukhova, ”On the compensated compactness principle” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 433, No. 5, 1–6 (2010); English transl.: Dokl. Math. 82, No. 1, 590–595 (2010). · Zbl 1211.35075
[35] F. Murat, ”Compacite par compensation,” Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Fis. Mat. 5, 481–507 (1978). · Zbl 0399.46022
[36] V. V. Zhikov, ” ”On the technique for passing to the limit in nonlinear elliptic equations” [in Russian], Funkts. Anal. Prilozh. 43, No. 2, 19–38 (2009); English transl.: Funct. Anal. Appl. 43, No. 2, 96–112 (2009). · Zbl 1271.35033
[37] V. V. Zhikov, ”On passage to the limit in nonlinear elliptic equations” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 420, No. 3, 300–305 (2008); English transl.: Dokl. Math. 77, No. 3, 383–387 (2008). · Zbl 1184.35131
[38] V. V. Zhikov, ”On the weak convergence of fluxes to a flux” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 430, No. 4, 439–443 (2010); English transl.: Dokl. Math. 81, No. 1, 58–62 (2010). · Zbl 1202.35094
[39] L. Boccardo and T. Gallouet, ”Nonlinear elliptic and parabolic equations involving measure data,” J. Funct. Anal. 87, 149–169 (1989). · Zbl 0707.35060 · doi:10.1016/0022-1236(89)90005-0
[40] L. Tonelli, ”Sur une methode directedu calcul des variations,” Rend. Circ. Mat. Palermo 39, 223–264 (1915). · JFM 45.0615.02
[41] M. Lavrentiev, ”Sur quelques problemes du calcul des variations,” Ann. Math. Pura Appl. 4, 107–124 (1926).
[42] L. Tonelli, Fondamenti di calcolo delle variazioni I. II Zanichelli, Bologna (1921–1923).
[43] B. Mania, ”Sopra un esempio di Lavrentieff,” Boll. Umi. 13, 146–153 (1934). · Zbl 0009.15803
[44] G. Buttazzo, M. Giaquinta, and S. Hildebrandt, One-Dimensional Variational Problems. An Introduction and its Applications, Clarendon Press, Oxford (1998). · Zbl 0915.49001
[45] G. Buttazzo and M. Belloni, A Servey on Old and Recent Results about the Gap Phenomenon, Kluwer Acad. Publ., Dordecht (1995). · Zbl 0852.49001
[46] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam etc. (1976). · Zbl 0322.90046
[47] V. V. Zhikov, ”Weighted Sobolev spaces” [in Russian], Mat. Sb. 189, No. 8, 27–58 (1998); English transl.: Sb. Math. 189, No. 8, 1139–1170 (1998). · Zbl 0919.46026
[48] T. Gallouet, J. Lederer, F. Murat, and L. Tartar, ”On a turbulent system with unbounded eddy viscosities,” Nonlinear Anal., Theory Methods Appl. 52, No. 4, A, 1051–1068 (2003). · Zbl 1013.35068
[49] M. Rockner and T. S. Zhang, ”Uniqueness of generalized Schr”odinger operators and applications,” J. Funct. Anal. 105, No. 1, 187–231 (1992). · Zbl 0779.35028 · doi:10.1016/0022-1236(92)90078-W
[50] P. Cattiax and M. Fradon, ”Entropy, reversible diffusion processes, and Markov uniqueness,” J. Funct. Anal. 138, No. 1, 243–272 (1996). · Zbl 0863.60074 · doi:10.1006/jfan.1996.0064
[51] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus [in Russian], Moscow–Izhevsk (2008); English transl.: Am. Math. Soc., Providence, RI (2010).
[52] Yu. A. Alkhutov and V. V. Zhikov, ”On the Hölder property of one elliptic equation” [in Russian], Sovrem. Mat. Prilozh. 10, 8–21 (2003); English transl.: J. Math. Sci., New York 129, No. 1, 3523–3536 (2005). · Zbl 1137.35383
[53] Yu. G. Reshetnyak, ”General theorems on semicontinuity and on convergence with a functional” [in Russian], Sib. Mat. Zh. 8, No. 5, 1051–1069 (1967); English transl.: Sib. Math. J. 8, No. 5, 801–816 (1967).
[54] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974); English transl.: North-Holland, Amsterdam etc. (1979). · Zbl 0407.90051
[55] V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals [in Russian], Nauka, Moscow (1993).
[56] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin (1994).
[57] V. V. Zhikov, ”On passage to the limit in nonlinear variational problems” [in Russian], Mat. Sb. 138, No. 8, 47–84 (1992); English transl.: Russ. Acad. Sci., Sb., Math. 76, No. 2, 427–459 (1993). · Zbl 0767.35021
[58] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Interscience Publ. New York etc. (1958). · Zbl 0084.10402
[59] W. Orlicz, ”Uber konjugierte Exponentenfolgen,” Stud. Math. 3, 200–211 (1931). · Zbl 0003.25203
[60] F.-Y. Maeda, ”Poincaré type inequality and an integrability result for variable exponent,” JIPAM, J. Inequal. Pure Appl. Math. 9, No. 3, Paper No. 68, electronic only (2008).
[61] L. Diening, ”Maximal functions in generalized L p ({\(\cdot\)}) spaces,” Math. Inequal. Appl. 7, No. 2, 245–254 (2004). · Zbl 1071.42014
[62] V. V. Zhikov, ”On density of smooth functions in Sobolev–Orlich spaces” [in Russian], Zap. Nauchn. Sem. POMI 310, 67–81 (2004); English transl.: J. Math. Sci., New York 132, No. 3, 285–294 (2006). · Zbl 1086.46026
[63] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Ration etc. (1992). · Zbl 0804.28001
[64] P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel (1997). · Zbl 0879.49017
[65] K. Zhang, ”Biting theorems for Jacobians and their applications,” Ann. Inst. Henri Poincaré, Anal. Non Lineaire 7, No. 4, 345–365 (1990). · Zbl 0717.49012
[66] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pèrez, ”The boundedness of classical operators on variable L p spaces,” Ann. Acad. Sci. Fenn. Math. 31, No. 1, 239–264 (2006). · Zbl 1100.42012
[67] L. Diening and M. Ruzicka, ”Calderón–Zygmund operators on generalized Lebesgue spaces L p({\(\cdot\)}) and problems related to fluid dynamics,” J. Reine Angew. Math. 563 197–220, 2003. · Zbl 1072.76071
[68] L. Diening, J. Malek, and M. Steinhauer, ”On Lipschitz truncation on Sobolev functions (with variable exponent) and their selected applications,” ESAIM, Control Optim. Calc. Var. 14 No. 2, 211–232 (2008). · Zbl 1143.35037 · doi:10.1051/cocv:2007049
[69] A. P. Calderón and A. Zygmund, ”On the existence of certain singular integrals,” Acta Math. 88, No. 1, 85–139 (1952). · Zbl 0047.10201 · doi:10.1007/BF02392130
[70] V. V. Zhikov and S. E. Pastukhova, ”On Gehring’s lemma” Dokl. Akad. Nauk, Ross. Akad. Nauk 419, No. 4, 443–448 (2008); English transl.: Dokl. Math. 77, No. 2, 243–248 (2008). · Zbl 1172.35023
[71] V. V. Zhikov, ”Solvability of the three-dimensional thermistor problem” [in Russian], Tr. Mat. Inst. Steklova 261, 101–114 (2008); English transl.: Proc. Steklov Inst. Math. 261, 98–111 (2008). · Zbl 1237.35058
[72] V. V. Zhikov, ”Existence theorem for some pairs of coupled elliptic equations” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 418, No. 4, 447–452 (2008); English transl.: Dokl. Math. 77, No. 1, 80–84 (2008).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.