×

Asymptotics of the deformed higher order Airy-kernel determinants and applications. (English) Zbl 1531.34081

Summary: We study the one-parameter family of Fredholm determinants \(\det(I-\rho^2\mathcal{K}_{n,x})\), \(\rho\in\mathbb{R}\), where \(\mathcal{K}_{n,x}\) stands for the integral operator acting on \(L^2(x,+\infty)\) with the higher order Airy kernel. This family of determinants represents a new universal class of distributions which is a higher order analogue of the classical Tracy-Widom distribution. Each of the determinants admits an integral representation in terms of a special real solution to the \(n\)th member of the Painlevé II hierarchy. Using the Riemann-Hilbert approach, we establish asymptotics of the determinants and the associated higher order Painlevé II transcendents as \(x\to-\infty\) for \(0<|\rho|<1\) and \(|\rho|>1\), respectively. In the case of \(0<|\rho|<1\), we are able to calculate the constant term in the asymptotic expansion of the determinants, while for \(|\rho|>1\), the relevant asymptotics exhibit singular behaviours. Applications of our results are also discussed, which particularly include asymptotic statistical properties of the counting function for the random point process defined by the higher order Airy kernel.

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
34M50 Inverse problems (Riemann-Hilbert, inverse differential Galois, etc.) for ordinary differential equations in the complex domain
33E17 Painlevé-type functions
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)

Software:

DLMF

References:

[1] Ablowitz, M. J.; Segur, H., Asymptotic solutions of the Korteweg-de Vries equation, Stud. Appl. Math., 57, 13-44 (197677) · Zbl 0369.35055 · doi:10.1002/sapm197757113
[2] Bertola, M., The dependence on the monodromy data of the isomonodromic tau function, Commun. Math. Phys., 294, 539-79 (2010) · Zbl 1218.37099 · doi:10.1007/s00220-009-0961-7
[3] Bogatskiy, A.; Claeys, T.; Its, A., Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge, Commun. Math. Phys., 347, 127-62 (2016) · Zbl 1371.33034 · doi:10.1007/s00220-016-2691-y
[4] Bohigas, O.; de Carvalho, J. X.; Pato, M., Deformations of the Tracy-Widom distribution, Phys. Rev. E, 79 (2009) · doi:10.1103/PhysRevE.79.031117
[5] Bohigas, O.; Pato, M. P., Randomly incomplete spectra and intermediate statistics, Phys. Rev. E, 74 (2006) · doi:10.1103/PhysRevE.74.036212
[6] Bothner, T.; Buckingham, R., Large deformations of the Tracy-Widom distribution I: non-oscillatory asymptotics, Commun. Math. Phys., 359, 223-63 (2018) · Zbl 1407.60005 · doi:10.1007/s00220-017-3006-7
[7] Bothner, T.; Cafasso, M.; Tarricone, S., Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel, Ann. Inst. Henri Poincare, 58, 1505-46 (2022) · Zbl 1494.30074 · doi:10.1214/21-AIHP1211
[8] Bothner, T.; Deift, P.; Its, A.; Krasovsky, I., On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I, Commun. Math. Phys., 337, 1397-463 (2015) · Zbl 1321.82027 · doi:10.1007/s00220-015-2357-1
[9] Bothner, T.; Its, A., The nonlinear steepest descent approach to the singular asymptotics of the second Painlevé transcendent, Physica D, 241, 2204-25 (2012) · Zbl 1266.34142 · doi:10.1016/j.physd.2012.02.014
[10] Bothner, T.; Its, A.; Prokhorov, A., The analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential, Adv. Math., 345, 483-551 (2019) · Zbl 1447.60038 · doi:10.1016/j.aim.2019.01.025
[11] Cafasso, M.; Claeys, T.; Girotti, M., Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes, Int. Math. Res. Not., 2021, 2437-78 (2021) · Zbl 1489.60081 · doi:10.1093/imrn/rnz168
[12] Cafasso, M.; Tarricone, S., The Riemann-Hilbert approach to the generating function of the higher order Airy point processes, Recent Trends in Formal and Analytic Solutions of Diff. Equations (Contemp. Math. vol 782), pp 93-109 (2023), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1520.34085
[13] Charlier, C., Exponential moments and piecewise thinning for the Bessel point process, Int. Math. Res. Not., 2021, 16009-73 (2021) · Zbl 1490.60119 · doi:10.1093/imrn/rnaa054
[14] Charlier, C.; Claeys, T., Global rigidity and exponential moments for soft and hard edge point processes, Probab. Math. Phys., 2, 363-417 (2021) · doi:10.2140/pmp.2021.2.363
[15] Claeys, T.; Its, A.; Krasovsky, I., Higher-order analogues of the Tracy-Widom distribution and the Painlevé II hierarchy, Commun. Pure Appl. Math., 63, 362-412 (2010) · Zbl 1198.34191 · doi:10.1002/cpa.20284
[16] Clarkson, P. A.; Joshi, N.; Pickering, A., Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach, Inverse Problems, 15, 175-87 (1999) · Zbl 0923.35170 · doi:10.1088/0266-5611/15/1/019
[17] Clarkson, P. A.; McLeod, J. B., A connection formula for the second Painlevé transcendent, Arch. Ration. Mech. Anal., 103, 97-138 (1988) · Zbl 0653.34020 · doi:10.1007/BF00251504
[18] Dai, D.; Xu, S-X; Zhang, L., Gap probability for the hard edge Pearcey process, Ann. Henri Poincaré, 24, 2067-136 (2023) · Zbl 1516.60030 · doi:10.1007/s00023-023-01266-5
[19] Dai, D.; Xu, S-X; Zhang, L., On the deformed Pearcey determinant, Adv. Math., 400 (2022) · Zbl 1506.60011 · doi:10.1016/j.aim.2022.108291
[20] Dai, D.; Zhai, Y., Asymptotics of the deformed Fredholm determinant of the confluent hypergeometric kernel, Stud. Appl. Math., 149, 1032-85 (2022) · Zbl 1530.30037 · doi:10.1111/sapm.12528
[21] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach (Courant Lecture Notes vol 3) (1999), Providence, RI: AMS, Providence, RI
[22] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., 137, 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[23] Deift, P.; Zhou, X., Asymptotics for the Painlevé II equation, Commun. Pure Appl. Math., 48, 277-337 (1995) · Zbl 0869.34047 · doi:10.1002/cpa.3160480304
[24] Flaschka, H.; Newell, A. C., Monodromy and spectrum-preserving deformations I, Commun. Math. Phys., 76, 65-116 (1980) · Zbl 0439.34005 · doi:10.1007/BF01197110
[25] Fokas, A. S.; Its, A. R.; Kapaev, A. A.; Novokshenov, V. Y., Painlevé Transcendents: The Riemann-Hilbert Approach (Mathematical Surveys and Monographs vol 128) (2006), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1111.34001
[26] Hastings, S. P.; McLeod, J. B., A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Ration. Mech. Anal., 73, 31-51 (1980) · Zbl 0426.34019 · doi:10.1007/BF00283254
[27] Hethcote, H. W., Error bounds for asymptotic approximations of zeros of transcendental functions, SIAM J. Math. Anal., 1, 147-52 (1970) · Zbl 0199.49902 · doi:10.1137/0501015
[28] Huang, L.; Zhang, L., Higher order Airy and Painlevé asymptotics for the mKdV hierarchy, SIAM J. Math. Anal., 54, 5291-334 (2022) · Zbl 1506.37088 · doi:10.1137/21M1448008
[29] Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), New York: Wiley, New York · Zbl 1197.62135
[30] Johansson, K., Random Matrices and Determinantal Processes, Mathematical Statistical Physics (Lecture Notes of the Les Houches Summer School), pp 1-55 (2006), Amsterdam: Elsevier, Amsterdam
[31] Kapaev, A. A., Global asymptotics of the second Painlevé transcendent, Phys. Lett. A, 167, 356-62 (1992) · doi:10.1016/0375-9601(92)90271-M
[32] Kimura, T.; Zahabi, A., Unitary matrix models and random partitions: universality and multi-criticality, J. High Energy Phys., JHEP07(2021)100 (2021) · Zbl 1468.81085 · doi:10.1007/JHEP07(2021)100
[33] Kimura, T.; Zahabi, A., Universal edge scaling in random partitions, Lett. Math. Phys., 111, 48 (2021) · Zbl 1462.60008 · doi:10.1007/s11005-021-01389-y
[34] Kudryashov, N. A., One generalization of the second Painlevé hierarchy, J. Phys. A, 35, 93-99 (2002) · Zbl 1007.34083 · doi:10.1088/0305-4470/35/1/308
[35] Le Doussal, P.; Majumdar, S. N.; Schehr, G., Multicritical edge statistics for the momenta of fermions in nonharmonic traps, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.030603
[36] Mazzocco, M.; Mo, M. Y., The Hamiltonian structure of the second Painlevé hierarchy, Nonlinearity, 20, 2845-82 (2007) · Zbl 1156.34079 · doi:10.1088/0951-7715/20/12/006
[37] Mehta, M. L., Random Matrices (2004), Amsterdam: Elsevier/Academic, Amsterdam · Zbl 1107.15019
[38] Olver, F W JOlde Daalhuis, A BLozier, D WSchneider, B IBoisvert, R FClark, C WMiller, B RSaunders, B V(eds)2020NIST Digital Library of Mathematical Functions(available at: http://dlmf.nist.gov/)
[39] Segur, H.; Ablowitz, M. J., Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent, Physica D, 3, 165-84 (1981) · Zbl 1194.35388 · doi:10.1016/0167-2789(81)90124-X
[40] Soshnikov, A., Gaussian fluctuation for the number of particles in Airy, Bessel, sine and other determinantal random point fields, J. Stat. Phys., 100, 491-522 (2000) · Zbl 1041.82001 · doi:10.1023/A:1018672622921
[41] Soshnikov, A., Determinantal random point fields, Russ. Math. Surv., 55, 923-75 (2000) · Zbl 0991.60038 · doi:10.1070/RM2000v055n05ABEH000321
[42] Tracy, C.; Widom, H., Level spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-74 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[43] Xia, J.; Xu, S-X; Zhao, Y-Q, Singular asymptotics for the Clarkson-McLeod solutions of the fourth Painlevé equation, Physica D, 434 (2022) · Zbl 1491.34100 · doi:10.1016/j.physd.2022.133254
[44] Zhou, J-R; Xu, S-X; Zhao, Y-Q, Uniform asymptotics of a system of Szegö class polynomials via the Riemann-Hilbert approach, Anal. Appl., 9, 447-80 (2011) · Zbl 1242.41036 · doi:10.1142/S0219530511001947
[45] Zhou, J-R; Zhao, Y-Q, Uniform asymptotics of the Pollaczek polynomials via the Riemann-Hilbert approach, Proc. R. Soc. A, 464, 2091-112 (2008) · Zbl 1145.33302 · doi:10.1098/rspa.2007.0385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.