×

Gap probability for the hard edge Pearcey process. (English) Zbl 1516.60030

Summary: The hard edge Pearcey process is universal in random matrix theory and many other stochastic models. This paper deals with the gap probability for the thinned/unthinned hard edge Pearcey process over the interval \((0, s)\) by working on a \(3 \times 3\) matrix-valued Riemann-Hilbert problem for the relevant Fredholm determinants. We establish an integral representation of the gap probability via the Hamiltonian related to a new system of coupled differential equations. Together with some remarkable differential identities for the Hamiltonian, we derive the large gap asymptotics for the thinned hard edge Pearcey process, including the explicitly evaluation of the constant factor in terms of the Barnes G-function. As an application, we also obtain the asymptotic statistical properties of the counting function for the hard edge Pearcey process.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60B20 Random matrices (probabilistic aspects)

Software:

DLMF

References:

[1] Adler, M.; Cafasso, M.; van Moerbeke, P., Nonlinear PDEs for gap probabilities in random matrices and KP theory, Phys. D, 241, 2265-2284 (2012) · Zbl 1270.35205
[2] Baik, J.; Buckingham, R.; DiFranco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Commun. Math. Phys., 280, 463-497 (2008) · Zbl 1221.33032
[3] Bleher, PM; Kuijlaars, ABJ, Large \(n\) limit of Gaussian random matrices with external source, part III: double scaling limit, Commun. Math. Phys., 270, 481-517 (2007) · Zbl 1126.82010
[4] Bohigas, O.; Pato, MP, Randomly incomplete spectra and intermediate statistics, Phys. Rev. E, 74, 036212 (2006)
[5] Borodin, A.; Deift, P., Fredholm determinants, Jimbo-Miwa-Ueno \(\tau \)-functions, and representation theory, Commun. Pure Appl. Math., 55, 1160-1230 (2002) · Zbl 1033.34089
[6] Borodin, A.; Kuan, J., Random surface growth with a wall and Plancherel measures for \(O( \infty )\), Commun. Pure Appl. Math., 63, 831-894 (2010) · Zbl 1193.82013
[7] Bothner, T.; Buckingham, R., Large deformations of the Tracy-Widom distribution I: non-oscillatory asymptotics, Commun. Math. Phys., 359, 223-263 (2018) · Zbl 1407.60005
[8] Bothner, T.; Its, A.; Prokhorov, A., The analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential, Adv. Math., 345, 483-551 (2019) · Zbl 1447.60038
[9] Brézin, E.; Hikami, S., Level spacing of random matrices in an external source, Phys. Rev. E., 58, 7176-7185 (1998)
[10] Brézin, E.; Hikami, S., Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev. E., 57, 4140-4149 (1998)
[11] Cafasso, M.; Claeys, T.; Girotti, M., Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes, Int. Math. Res. Not. IMRN, 2021, 2437-2478 (2021) · Zbl 1489.60081
[12] Cerenzia, M.: A path property of Dyson gaps, Plancherel measures for Sp \(( \infty )\), and random surface growth, preprint arXiv:1506.08742v3
[13] Cerenzia, M.; Kuan, J., Hard-edge asymptotics of the Jacobi growth process, Ann. Inst. H. Poincaré Probab. Statist., 56, 2329-2355 (2020) · Zbl 1470.60129
[14] Charlier, C., Large gap asymptotics for the generating function of the sine point process, Proc. London Math. Soc., 123, 103-152 (2021) · Zbl 1495.60039
[15] Charlier, C., Exponential moments and piecewise thinning for the Bessel point process, Int. Math. Res. Not. IMRN, 2021, 16009-16073 (2021) · Zbl 1490.60119
[16] Charlier, C., Upper bounds for the maximum deviation of the Pearcey process, Random Matrices Theory Appl., 10, 2150039 (2021) · Zbl 1526.60006
[17] Charlier, C.; Claeys, T., Global rigidity and exponential moments for soft and hard edge point processes, Prob. Math. Phys., 2, 363-417 (2021) · Zbl 1512.60030
[18] Charlier, C.; Claeys, T., Thinning and conditioning of the circular unitary ensemble, Random Matrices Theory Appl., 06, 1750007 (2017) · Zbl 1386.60025
[19] Charlier, C.; Lenells, J., The hard-to-soft edge transition: exponential moments, central limit theorems and rigidity, J. Approx. Theory, 285, 105833 (2023) · Zbl 1525.60018
[20] Charlier, C., Moreillon, P.: On the generating function of the Pearcey process, preprint arXiv:2107.01859
[21] Chen, Y.; Eriksen, K.; Tracy, CA, Largest eigenvalue distribution in the double scaling limit of matrix models: a Coulomb fluid approach, J. Phys. A, 28, L207-L211 (1995) · Zbl 0827.15043
[22] Dai, D., Xu, S.-X., Zhang, L.: On the deformed Pearcey determinant. Adv. Math. 400, 108291, p. 64 (2022) · Zbl 1506.60011
[23] Dai, D.; Xu, S-X; Zhang, L., Asymptotics of Fredholm determinant associated with the Pearcey kernel, Commun. Math. Phys., 382, 1769-1809 (2021) · Zbl 1469.60027
[24] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach Courant Lecture Notes (1999), New York: New York University, New York
[25] Deift, P.; Its, A.; Krasovsky, I., Asymptotics of the Airy-kernel determinant, Commun. Math. Phys., 278, 643-678 (2008) · Zbl 1167.15005
[26] Deift, P.; Its, A.; Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math., 146, 149-235 (1997) · Zbl 0936.47028
[27] Deift, P.; Krasovsky, I.; Vasilevska, J., Asymptotics for a determinant with a confluent hypergeometric kernel, Int. Math. Res. Not. IMRN, 2011, 2117-2160 (2011) · Zbl 1216.33013
[28] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems Asymptotics for the MKdV equation, Ann. Math., 137, 295-368 (1993) · Zbl 0771.35042
[29] Delvaux, S.; Vető, B., The hard edge tacnode process and the hard edge Pearcey process with non-intersecting squared Bessel paths, Random Matrices Theory Appl., 4 (2015) · Zbl 1327.60185
[30] Deschout, K., Kuijlaars, A.B.J.: Critical behavior in Angelesco ensembles. J. Math. Phys. 53, 123523, p. 21 (2012) · Zbl 1278.15039
[31] Desrosiers, P.; Forrester, PJ, A note on biorthogonal ensembles, J. Approx. Theory, 152, 167-187 (2008) · Zbl 1149.42014
[32] Doussal, PL; Majumdar, SN; Schehr, G., Multicritical edge statistics for the momenta of fermions in nonharmonic traps, Phys. Rev. Lett., 121, 030603 (2018)
[33] Dyson, F., Statistical theory of energy levels of complex systems, I, II, and III, J. Math. Phys., 3, 140-175 (1962) · Zbl 0105.41604
[34] Ehrhardt, T., The asymptotics of a Bessel-kernel determinant which arises in random matrix theory, Adv. Math., 225, 3088-3133 (2010) · Zbl 1241.47059
[35] Erdős, L.; Krüger, T.; Schröder, D., Cusp universality for random matrices I: local Law and the complex Hermitian case, Commun. Math. Phys., 378, 1203-1278 (2020) · Zbl 1475.60013
[36] Erdős, L.; Yau, H-T, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.), 49, 377-414 (2012) · Zbl 1263.15032
[37] Forrester, PJ, Log-gases and Random Matrices, London Mathematical Society Monographs Series, 34 (2010), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1217.82003
[38] Forrester, PJ, The spectrum edge of random matrix ensembles, Nucl. Phys. B, 402, 709-728 (1993) · Zbl 1043.82538
[39] Geudens, D.; Zhang, L., Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel, Int. Math. Res. Not. IMRN, 2015, 5733-5782 (2015) · Zbl 1341.60127
[40] Girotti, M., Gap probabilities for the generalized Bessel process: a Riemann-Hilbert approach, Math. Phys. Anal. Geom., 17, 183-211 (2014) · Zbl 1308.60062
[41] Hachem, W.; Hardy, A.; Najim, J., Large complex correlated Wishart matrices: the Pearcey kernel and expansion at the hard edge, Electron. J. Probab., 21, 1-36 (2016) · Zbl 1336.15016
[42] Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), New York: Wiley, New York · Zbl 1197.62135
[43] Its, AR; Izergin, AG; Korepin, VE; Slavnov, NA, Differential equations for quantum correlation functions, Int. J. Modern Phys. B, 4, 1003-1037 (1990) · Zbl 0719.35091
[44] Its, AR; Krasovsky, I., Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump, Contemp. Math., 458, 215-248 (2008) · Zbl 1163.15027
[45] Jimbo, M.; Miwa, T.; Mori, Y.; Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D, 1, 80-158 (1980) · Zbl 1194.82007
[46] Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and \(\tau \)-function, Phys. D, 2, 306-352 (1981) · Zbl 1194.34167
[47] Johansson, K., Random Matrices and Determinantal Processes, Mathematical Statistical Physics (Lecture notes of the Les Houches Summer School), 1-55 (2006), Amsterdam: Elsevier B. V, Amsterdam
[48] Krasovsky, I.: Large Gap Asymptotics for Random Matrices, XVth International Congress on Mathematical Physics, New Trends in Mathematical Physics, pp. 413-419. Springer, Berlin (2009) · Zbl 1184.15025
[49] Kuijlaars, A.B.J.: Universality, Chapter 6 in The Oxford Handbook on Random Matrix Theory. In: Akemann, G., Baik, J., Di Francesco, P. (eds.), pp. 103-134. Oxford University Press, Oxford (2011) · Zbl 1236.15071
[50] Kuijlaars, ABJ; Martínez-Finkelshtein, A.; Wielonsky, F., Non-intersecting squared Bessel paths: critical time and double scaling limit, Commun. Math. Phys., 308, 227-279 (2011) · Zbl 1245.60044
[51] Kuijlaars, ABJ; Martínez-Finkelshtein, A.; Wielonsky, F., Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights, Commun. Math. Phys., 286, 217-275 (2009) · Zbl 1188.60018
[52] Kuijlaars, ABJ; Vanlessen, M., Universality for eigenvalue correlations from the modified Jacobi unitary ensemble, Int. Math. Res. Not. IMRN, 2002, 1575-1600 (2002) · Zbl 1122.30303
[53] Liechty, K.; Wang, D., Nonintersecting Brownian bridges between reflecting or absorbing walls, Adv. Math., 309, 155-208 (2017) · Zbl 1407.60111
[54] Mehta, ML, Random Matrices (2004), Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1107.15019
[55] Muskhelishvili, N.I.: Singular integral equations, Dover Publications, Inc., New York, 1992. Boundary problems of function theory and their application to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation
[56] Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds) NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov, Release 1.1.2 of 2021-06-15
[57] Soshnikov, A., Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields, J. Stat. Phys., 100, 491-522 (2000) · Zbl 1041.82001
[58] Soshnikov, A., Determinantal random point fields, Russ. Math. Surv., 55, 923-975 (2000) · Zbl 0991.60038
[59] Smith, NR; Le Doussal, P.; Majumdar, SN; Schehr, G., Full counting statistics for interacting trapped fermions, SciPost Phys., 11, 110 (2011)
[60] Smith, NR; Le Doussal, P.; Majumdar, SN; Schehr, G., Counting statistics for non-interacting fermions in a \(d\)-dimensional potential, Phys. Rev. E, 103, L030105 (2021)
[61] Tracy, C.; Widom, H., Level spacing distributions and the Bessel kernel, Commun. Math. Phys., 161, 289-309 (1994) · Zbl 0808.35145
[62] Tracy, C.; Widom, H., Level spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994) · Zbl 0789.35152
[63] Vanlessen, M., Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory, Constr. Approx., 25, 125-175 (2007) · Zbl 1117.15025
[64] Yao, L.-M., Zhang, L.: Asymptotics of the hard edge Pearcey determinant, preprint arXiv:2209.12524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.