×

On the deformed Pearcey determinant. (English) Zbl 1506.60011

Summary: In this paper, we are concerned with the deformed Pearcey determinant \(\det ( I - \gamma K_{s , \rho}^{\operatorname{Pe}} )\), where \(0 \leq \gamma < 1\) and \(K_{s , \rho}^{\operatorname{Pe}}\) stands for the trace class operator acting on \(L^2 ( - s , s )\) with the classical Pearcey kernel arising from random matrix theory. This determinant corresponds to the gap probability for the Pearcey process after thinning, which means each particle in the Pearcey process is removed independently with probability \(1 - \gamma\). We establish an integral representation of the deformed Pearcey determinant involving the Hamiltonian associated with a family of special solutions to a system of nonlinear differential equations. Together with some remarkable differential identities for the Hamiltonian, this allows us to obtain the large gap asymptotics, including the exact calculation of the constant term, which complements our previous work on the undeformed case (i.e., \( \gamma = 1)\). It comes out that the deformed Pearcey determinant exhibits a significantly different asymptotic behavior from the undeformed case, which suggests a transition will occur as the parameter \(\gamma\) varies. As an application of our results, we obtain the asymptotics for the expectation and variance of the counting function for the Pearcey process, and a central limit theorem as well.

MSC:

60B20 Random matrices (probabilistic aspects)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
34E05 Asymptotic expansions of solutions to ordinary differential equations

References:

[1] Adler, M.; Cafasso, M.; van Moerbeke, P., From the Pearcey to the Airy process, Electron. J. Probab., 16, 1048-1064 (2011) · Zbl 1231.60107
[2] Adler, M.; Orantin, N.; van Moerbeke, P., Universality for the Pearcey process, Physica D, 239, 924-941 (2010) · Zbl 1189.82085
[3] Adler, M.; van, P., Moerbeke, PDEs for the Gaussian ensemble with external source and the Pearcey distribution, Commun. Pure Appl. Math., 60, 1261-1292 (2007) · Zbl 1193.82012
[4] Ajanki, O. H.; Erdős, L.; Krüger, T., Singularities of solutions to quadratic vector equations on the complex upper half-plane, Commun. Pure Appl. Math., 70, 1672-1705 (2017) · Zbl 1419.15014
[5] Alt, J.; Erdős, L.; Krüger, T., The Dyson equation with linear self-energy: spectral bands, edges and cusps, Doc. Math., 25, 1421-1539 (2020) · Zbl 1450.60005
[6] Bertola, M.; Cafasso, M., The transition between the gap probabilities from the Pearcey to the Airy process-a Riemann-Hilbert approach, Int. Math. Res. Not., 2012, 1519-1568 (2012) · Zbl 1251.60005
[7] Bleher, P. M.; Kuijlaars, A. B.J., Large n limit of Gaussian random matrices with external source, part III: double scaling limit, Commun. Math. Phys., 270, 481-517 (2007) · Zbl 1126.82010
[8] Bogatskiy, A.; Claey, T.; Its, A., Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge, Commun. Math. Phys., 347, 127-162 (2016) · Zbl 1371.33034
[9] Bohigas, O.; Pato, M. P., Randomly incomplete spectra and intermediate statistics, Phys. Rev. E, 74, Article 036212 pp. (2006)
[10] Bohigas, O.; Pato, M., Missing levels in correlated spectra, Phys. Lett. B, 595, 171-176 (2004)
[11] Borodin, A.; Deift, P., Fredholm determinants, Jimbo-Miwa-Ueno τ-functions, and representation theory, Commun. Pure Appl. Math., 55, 1160-1230 (2002) · Zbl 1033.34089
[12] Bothner, T., From gap probabilities in random matrix theory to eigenvalue expansions, J. Phys. A, 49, Article 075204 pp. (2016), 77 pp. · Zbl 1342.60007
[13] Bothner, T.; Buckingham, R., Large deformations of the Tracy-Widom distribution I: non-oscillatory asymptotics, Commun. Math. Phys., 359, 223-263 (2018) · Zbl 1407.60005
[14] Bothner, T.; Deift, P.; Its, A.; Krasovsky, I., The sine process under the influence of a varying potential, J. Math. Phys., 59, Article 091414 pp. (2018), 6 pp. · Zbl 1404.60010
[15] Bothner, T.; Deift, P.; Its, A.; Krasovsky, I., On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential II, Oper. Theory, Adv. Appl., 259, 213-234 (2017) · Zbl 1382.82014
[16] Bothner, T.; Deift, P.; Its, A.; Krasovsky, I., On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I, Commun. Math. Phys., 337, 1397-1463 (2015) · Zbl 1321.82027
[17] Bothner, T.; Its, A.; Prokhorov, A., The analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential, Adv. Math., 345, 483-551 (2019) · Zbl 1447.60038
[18] Brézin, E.; Hikami, S., Level spacing of random matrices in an external source, Phys. Rev. E, 58, 7176-7185 (1998)
[19] Brézin, E.; Hikami, S., Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev. E, 57, 4140-4149 (1998)
[20] Budylin, A. M.; Buslaev, V. S., Quasiclassical asymptotics of the resolvent of an integral convolution operator with a sine kernel on a finite interval, Algebra Anal.. Algebra Anal., St. Petersburg Math. J., 7, 925-942 (1996) · Zbl 0862.35148
[21] Charlier, C., Exponential moments and piecewise thinning for the Bessel point process, Int. Math. Res. Not., 2021, 16009-16073 (2021) · Zbl 1490.60119
[22] Charlier, C., Upper bounds for the maximum deviation of the Pearcey process, Random Matrices: Theory Appl., 10, Article 2150039 pp. (2021) · Zbl 1526.60006
[23] Charlier, C.; Claeys, T., Global rigidity and exponential moments for soft and hard edge point processes, Prob. Math. Phys., 2, 363-417 (2021)
[24] Charlier, C.; Lenells, J., The hard-to-soft edge transition: exponential moments, central limit theorems and rigidity, preprint · Zbl 1525.60018
[25] Charlier, C.; Moreillon, P., On the generating function of the Pearcey process, preprint · Zbl 1535.60082
[26] Dai, D.; Xu, S.-X.; Zhang, L., Asymptotics of Fredholm determinant associated with the Pearcey kernel, Commun. Math. Phys., 382, 1769-1809 (2021) · Zbl 1469.60027
[27] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, vol. 3 (1999), New York University
[28] Deift, P.; Gioev, D., Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Commun. Pure Appl. Math., 60, 867-910 (2007) · Zbl 1119.15022
[29] Deift, P.; Its, A.; Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math. (2), 146, 149-235 (1997) · Zbl 0936.47028
[30] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure Appl. Math., 52, 1335-1425 (1999) · Zbl 0944.42013
[31] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), 137, 295-368 (1993) · Zbl 0771.35042
[32] Erdős, L.; Krüger, T.; Schröder, D., Cusp universality for random matrices I: local law and the complex Hermitian case, Commun. Math. Phys., 378, 1203-1278 (2020) · Zbl 1475.60013
[33] Erdős, L.; Péché, S.; Ramíez, J. A.; Schlein, B.; Yau, H.-T., Bulk universality for Wigner matrices, Commun. Pure Appl. Math., 63, 895-925 (2010) · Zbl 1216.15025
[34] Erdős, L.; Schlein, B.; Yau, H.-T., Universality of random matrices and local relaxation flow, Invent. Math., 185, 75-119 (2011) · Zbl 1225.15033
[35] Erdős, L.; Yau, H.-T., Universality of local spectral statistics of random matrices, Bull. Am. Math. Soc. (N.S.), 49, 377-414 (2012) · Zbl 1263.15032
[36] Forrester, P. J., Log-Gases and Random Matrices, London Mathematical Society Monographs Series, vol. 34 (2010), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1217.82003
[37] Geudens, D.; Zhang, L., Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel, Int. Math. Res. Not., 2015, 5733-5782 (2015) · Zbl 1341.60127
[38] Hachem, W.; Hardy, A.; Najim, J., Large complex correlated Wishart matrices: fluctuations and asymptotic independence at the edges, Ann. Probab., 44, 2264-2348 (2016) · Zbl 1346.15035
[39] Hachem, W.; Hardy, A.; Najim, J., Large complex correlated Wishart matrices: the Pearcey kernel and expansion at the hard edge, Electron. J. Probab., 21 (2016), Paper No. 1, 36 pp. · Zbl 1336.15016
[40] Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), Wiley · Zbl 1197.62135
[41] Its, A. R.; Izergin, A. G.; Korepin, V. E.; Slavnov, N. A., Differential equations for quantum correlation functions, Int. J. Mod. Phys. B, 4, 1003-1037 (1990) · Zbl 0719.35091
[42] Its, A. R.; Krasovsky, I., Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump, Contemp. Math., 458, 215-248 (2008) · Zbl 1163.15027
[43] Jimbo, M.; Miwa, T.; Mori, Y.; Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D, 1, 80-158 (1980) · Zbl 1194.82007
[44] Jimbo, M.; Miwa, T.; Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function, Physica D, 2, 306-352 (1981) · Zbl 1194.34167
[45] Johansson, K., Random matrices and determinantal processes, (Mathematical Statistical Physics (2006), Elsevier B.V.: Elsevier B.V. Amsterdam), 1-55 · Zbl 1411.60144
[46] Kallenberg, O., A limit theorem for thinning of point processes, Inst. Stat. Mimeo Ser., 908 (1974)
[47] Krasovsky, I., Large gap asymptotics for random matrices, (XVth International Congress on Mathematical Physics. XVth International Congress on Mathematical Physics, New Trends in Mathematical Physics (2009), Springer), 413-419 · Zbl 1184.15025
[48] Kuijlaars, A. B.J., Universality, (Akemann, G.; Baik, J.; Di Francesco, P., The Oxford Handbook on Random Matrix Theory (2011), Oxford University Press), 103-134, Chapter 6 · Zbl 1236.15071
[49] Mehta, M. L., Random Matrices (2004), Elsevier/Academic Press: Elsevier/Academic Press Amsterdam · Zbl 1107.15019
[50] Okounkov, A.; Reshetikhin, N., Random skew plane partitions and the Pearcey process, Commun. Math. Phys., 269, 571-609 (2007) · Zbl 1115.60011
[51] Olver, F. W.J.; Olde Daalhuis, A. B.; Lozier, D. W.; Schneider, B. I.; Boisvert, R. F.; Clark, C. W.; Miller, B. R.; Saunders, B. V., Release 1.0.21 of 2018-12-15
[52] Pastur, L. A., The spectrum of random matrices, Teor. Mat. Fiz., 10, 102-112 (1972)
[53] Pearcey, T., The structure of an electromagnetic field in the neighborhood of a cusp of a caustic, Philos. Mag., 37, 311-317 (1946)
[54] Soshnikov, A., Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields, J. Stat. Phys., 100, 491-522 (2000) · Zbl 1041.82001
[55] Soshnikov, A., Determinantal random point fields, Russ. Math. Surv., 55, 923-975 (2000) · Zbl 0991.60038
[56] Soshnikov, A., Universality at the edge of the spectrum in Wigner random matrices, Commun. Math. Phys., 207, 697-733 (1999) · Zbl 1062.82502
[57] Tao, T.; Vu, V., Random matrices: universality of local eigenvalue statistics, Acta Math., 206, 127-204 (2011) · Zbl 1217.15043
[58] Tao, T.; Vu, V., Random matrices: universality of local eigenvalue statistics up to the edge, Commun. Math. Phys., 298, 549-572 (2010) · Zbl 1202.15038
[59] Tracy, C.; Widom, H., The Pearcey process, Commun. Math. Phys., 263, 381-400 (2006) · Zbl 1129.82031
[60] Tracy, C.; Widom, H., Level spacing distributions and the Bessel kernel, Commun. Math. Phys., 161, 289-309 (1994) · Zbl 0808.35145
[61] Tracy, C.; Widom, H., Level spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994) · Zbl 0789.35152
[62] Widom, H., Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals, Commun. Math. Phys., 171, 159-180 (1995) · Zbl 0839.47032
[63] Zinn-Justin, P., Random Hermitian matrices in an external field, Nucl. Phys. B, 497, 725-732 (1997) · Zbl 0933.82022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.