×

On the Hamiltonian and geometric structure of Langmuir circulation. (English) Zbl 1517.76015

Summary: The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.

MSC:

76B07 Free-surface potential flows for incompressible inviscid fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
76E30 Nonlinear effects in hydrodynamic stability
35Q31 Euler equations
53Z05 Applications of differential geometry to physics

References:

[1] I. Langmuir, Surface Motion of Water Induced by Wind, Science, 87 (1938), 119-123. https://doi.org/10.1126/science.87.2250.119 · doi:10.1126/science.87.2250.119
[2] D. D. Craik, S. Leibovich, A rational model for Langmuir circulations, J. Fluid. Mech., 73 (1976), 401-426. https://doi.org/10.1017/s0022112076001420 · Zbl 0324.76014 · doi:10.1017/s0022112076001420
[3] D. D. Holm, The Ideal Craik-Leibovich Equations, Physica D, 98 (1996), 415-441. https://doi.org/10.1016/0167-2789(96)00105-4 · Zbl 0899.76082 · doi:10.1016/0167-2789(96)00105-4
[4] V. A. Vladimirov, M. R. E. Proctor, D. W. Hughes, Vortex dynamics of oscillating flows, Arnold Math J., 1 (2015), 113-126. https://doi.org/10.1007/s40598-015-0010-x · Zbl 1325.76052 · doi:10.1007/s40598-015-0010-x
[5] C. Yang, Multiscale method, Central extensions and a generalized Craik-Leibovich equation, J. Geom. Phys., 116 (2017), 228-243. https://doi.org/10.1016/j.geomphys.2017.02.004 · Zbl 1415.34081 · doi:10.1016/j.geomphys.2017.02.004
[6] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des uides parfaits, Ann. Inst. Fourier., 16 (1966), 319-361. https://doi.org/10.5802/aif.233 · Zbl 0148.45301 · doi:10.5802/aif.233
[7] V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Springer-Verlag, New York, 1998. https://doi.org/10.1007/b97593 · Zbl 0902.76001
[8] B. A. Khesin, Yu. V. Chekanov, Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions, Physica D, 40 (1989), 119-131. https://doi.org/10.1016/0167-2789(89)90030-4 · Zbl 0820.58019 · doi:10.1016/0167-2789(89)90030-4
[9] C. Roger, Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys., 35 (1995), 225-266. https://doi.org/10.1016/0034-4877(96)89288-3 · Zbl 0892.17018 · doi:10.1016/0034-4877(96)89288-3
[10] C. Vizman, Geodesics on extensions of Lie groups and stability: the superconductivity equation, Phys. Lett. A, 284 (2001), 23-30. https://doi.org/10.1016/s0375-9601(01)00279-1 · Zbl 1002.76007 · doi:10.1016/s0375-9601(01)00279-1
[11] V. Zeitlin, Vorticity and waves: geometry of phase-space and the problem of normal variables, Physics. Letters. A., 164 (1992), 177-183. https://doi.org/10.1016/0375-9601(92)90699-m · doi:10.1016/0375-9601(92)90699-m
[12] C. Yang, B. Khesin, Averaging, symplectic reduction, and central extensions, Nonlinearity, 33 (2020), 1342-1365. https://doi.org/10.1088/1361-6544/ab5cdf · Zbl 1473.37069 · doi:10.1088/1361-6544/ab5cdf
[13] J. E. Marsden, G. Misiolek, J. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian Reduction by Stages, Springer-Verlag, New York, 2007. https://doi.org/10.1007/978-3-540-72470-4 · Zbl 1129.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.