×

Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in \(D\) dimensions. (English) Zbl 0820.58019

Summary: The Hamiltonian formalism for the Euler equations of an ideal fluid, superconductivity and a barotropic fluid on a \(D\)-dimensional Riemannian manifold is proposed. We show that each of these equations has an infinite series of integrals if \(D\) is even (“generalized entrophies”) and at least one integral if \(D\) is odd (“generalized helicity”). We prove that the magnetic hydrodynamics integral \(\int({\mathbf v}, {\mathbf B})\mu\) is equal to the average linking number of vector fields \(\text{rot }{\mathbf v}\) and \(\mathbf B\) in terms of the ergodic theory. All the invariants considered are Casimir elements (i.e. invariants of coadjoint action) of the corresponding infinite-dimensional Lie algebras.

MSC:

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
58J70 Invariance and symmetry properties for PDEs on manifolds
76A02 Foundations of fluid mechanics
76B99 Incompressible inviscid fluids
Full Text: DOI

References:

[1] Arnol’d, V. I., Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications �� l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16, 319 (1966) · Zbl 0148.45301
[2] Arnol’d, V. I., Hamilton character of the Euler equations of solid body and ideal fluid, Usp. Mat. Nauk, 24, 3, 225 (1969), (in Russian)
[3] Arnol’d, V. I., On one-dimensional cohomology of Lie algebra of divergence-free vector fields and on rotation number of dynamical systems, Funct. Anal. Appl., 3, 4 (1969) · Zbl 0249.34035
[4] Arnol’d, V. I., Mathematical Methods of Classical Mechanics (1978), Springer: Springer Berlin · Zbl 0407.57025
[5] Sel. Math. Sov., 5, 327 (1986), English transl. · Zbl 0623.57016
[6] Dezin, A. A., Invariant forms and some structure properties of the Euler equations of hydrodynamics, Z. Anal. Anwend., 2, 401 (1983), (in Russian) · Zbl 0542.76004
[7] Marsden, J.; Weinstein, A., Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D, 7, 305 (1983) · Zbl 0576.58008
[8] Dubrovin, B. A.; Novikov, S. P.; Fomenko, A. T., Modern geometry (1979), Nauka: Nauka Moscow, (in Russian) · Zbl 0433.53001
[9] Feynman, R. P., Statistical Mechanics (1972), Benjamin: Benjamin New York
[10] Holm, D. D.; Kupershmidt, B. A., Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity, Physica D, 6, 347 (1983) · Zbl 1194.76285
[11] Holm, D. D.; Kupershmidt, B. A., Poisson structures of superconductors, Phys. Lett. A, 93, 177 (1983)
[12] Holm, D. D.; Marsden, J. E.; Ratiu, T.; Wienstein, A., Nonlinear stability conditions and a priori estimates for barotropic hydrodynamics, Phys. Lett. A, 98, 15 (1983)
[13] Olver, P. J., A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal., 89, 233 (1982) · Zbl 0534.76035
[14] Ovsienko, V. Yu.; Khesin, B. A.; Chekanov, Yu. V., Integrals of the Euler equations of multidimensional hydrodynamics and superconductivity, Zapiski LOMI, 172, 105 (1989), (in Russian), Engl. transl. in J. Sov. Math., to appear. · Zbl 0779.76103
[15] Serre, D., Invariants et dégénérescence symplectique de l’équation d’Euler des fluides parfaits incompressibles, C.R. Acad. Sci. (Paris) Ser. A, 298, 349 (1984) · Zbl 0598.76006
[16] Vishik, S. V.; Dolzanskii, F. V., Analogs of the Euler-Poisson equations and magnetohydrodynamics equations connected with Lie groups, Dokl. Akad. Nauk USSR, 238, 1032 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.