×

The ideal Craik-Leibovich equations. (English) Zbl 0899.76082

Summary: We show that the Craik-Leibovich (CL) theory of Langmuir circulation in an ideal incompressible fluid driven by rapidly fluctuating surface waves due to the wind may be formulated in terms of Eulerian mean fluid variables as a Hamiltonian system. This formulation is facilitated by first determining Hamilton’s principle for the CL equations. The CL Hamilton’s principle is similar to that for a fluid plasma, driven by a rapidly varying external electromagnetic field via “\({\mathbf J}\cdot{\mathbf A}\)” minimal coupling, after averaging the plasma action over the fast phase of the (single frequency) driving field. This similarity leads to a precise analogy between the CL vortex force and the Lorentz force on an electrically charged fluid due to an externally imposed electromagnetic field. We determine the effect of this force on the inflection point criterion and the Richardson number criterion for stability of planar CL flows. The Noether symmetries of Hamilton’s principle for the CL equations (under fluid particle relabeling) lead to conservation laws for Eulerian mean potential vorticity and helicity, and generate the steady Eulerian mean flows as canonical transformations. The generalized Lagrangian mean theory is discussed from the same viewpoint.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76E20 Stability and instability of geophysical and astrophysical flows
86A05 Hydrology, hydrography, oceanography
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Abarbanel, H. D.I.; Holm, D. D., Nonlinear stability of inviscid flows in threthree dimensions: Incompressible fluids and barotropic fluids, Phys. Fluids, 30, 3369-3382 (1987) · Zbl 0666.76073
[2] Abarbanel, H. D.I.; Holm, D. D.; Marsden, J. E.; Ratiu, T., Nonlinear stability analysis of stratified ideal fluid equilibria, Philos. Trans. Roy. Soc. London Ser. A, 318, 349-409 (1987) · Zbl 0637.76119
[3] Andrews, D. G.; McIntyre, M. E., An exact theory of nonlinear waves on a Lagrangian-mean flow, J. Fluid Mech., 89, 609-646 (1978) · Zbl 0426.76025
[4] Aref, H.; Jones, S. W.; Mofina, S.; Zawadzki, I., Vortices, kinematics and Chaos, Physica D, 37, 423-440 (1989)
[5] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989), Springer: Springer New York · Zbl 0692.70003
[6] Craik, A. D.D., The generalized Lagrangian mean theory and hydrodynamic stability, J. Fluid Mech., 125, 27-35 (1982) · Zbl 0506.76054
[7] Craik, A. D.D., Wave-induced longitudinal-vortex instability in shear flows, J. Fluid Mech., 125, 37-52 (1982) · Zbl 0503.76028
[8] Craik, A. D.D., Wave Interactions and Fluid Flows (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0172.56201
[9] Craik, A. D.D.; Leibovich, S., A rational model for Langmuir circulations, J. Fluid Mech., 73, 401-426 (1976) · Zbl 0324.76014
[10] Dubreil-Jacotin, M. L., Complement a une note antériure sur les ondes de type permanent dans les liquides hétérogénes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21, 344-346 (1935) · JFM 61.0909.03
[11] Gjaja, I.; Holm, D. D., Self-consistent Hamiltonian dynamics of wave, mean-flow interaction for a rotating stratified incompressible fluid, Physica D, 98, 343-378 (1996), these Proceedings · Zbl 0900.76718
[12] Holm, D. D.; Marsden, J. E.; Ratiu, T., Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics, (ISBN 2-7606-0771-2 (1987), University of Montreal Press: University of Montreal Press Montreal) · Zbl 0594.00020
[13] Holm, D. D.; Marsden, J. E.; Ratiu, T.; Weinstein, A., Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123, 1-116 (1985) · Zbl 0717.76051
[14] Howard, L. N., Note on a paper of John W. Miles, J. Fluid Mech., 10, 509-512 (1961) · Zbl 0104.20704
[15] Leibovich, S., On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part I. Theory and averaged current, J. Fluid Mech., 79, 715-743 (1977) · Zbl 0351.76018
[16] Leibovich, S., Convective instability of stably stratified water in the ocean, J. Fluid Mech., 82, 561-581 (1977)
[17] Leibovich, S., On wave-current interactions theories of Langmuir circulations, J. Fluid Mech., 99, 715-724 (1980) · Zbl 0452.76013
[18] Leibovich, S., The form and dynamics of Langmuir circulation, Ann. Rev. Fluid Mech., 15, 391-427 (1983) · Zbl 0567.76034
[19] Leibovich, S.; Tandon, A., Three dimensional Langmuir circulations and stability in a stratified layer, J. Geophys. Res., 98, 16501-16508 (1993)
[20] Long, R. R., Some aspects of the flow of stratified fluids I. A theoretical investigation, Tellus, 5, 42-57 (1953)
[21] McIntyre, M. E., A note on the divergence effect and the Lagrangian-mean surface elevation in periodic water waves, J. Fluid Mech., 189, 235-242 (1988) · Zbl 0643.76014
[22] Miles, J. W., On the stability of heterogeneous shear flows, J. Fluid Mech., 10, 496-508 (1961) · Zbl 0101.43002
[23] Similon, P. L.; Kauffman, A. N.; Holm, D. D., Pondermotive Hamiltonian and Lyapunov stability for magnetically confined plasma in the presence of R.F. field, Phys. Lett. A, 106, 29-33 (1984)
[24] Similon, P. L.; Kauffman, A. N.; Holm, D. D., Oscillation center theory and ponderomotive stabilization of the low-frequency plasma modes, Phys. Fluids, 29, 1908-1922 (1986) · Zbl 0615.76056
[25] Whitham, G. B., Two-timing, variational principles and waves, J. Fluid Mech., 44, 373-395 (1970) · Zbl 0271.76005
[26] Yih, C. S., Stratified Flows (1980), Academic Press: Academic Press New York · Zbl 0458.76095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.