×

Analytical and number-theoretical properties of the two-dimensional sigma function. (Russian. English summary) Zbl 1455.11037

Summary: This survey is devoted to the classical and modern problems related to the entire function \({\sigma({\mathbf{u}};\lambda)} \), defined by a family of nonsingular algebraic curves of genus 2, where \({\mathbf{u}} = (u_1,u_3)\) and \(\lambda = (\lambda_4, \lambda_6,\lambda_8,\lambda_{10})\). It is an analogue of the Weierstrass sigma function \(\sigma({{u}};g_2,g_3)\) of a family of elliptic curves. Logarithmic derivatives of order \(2\) and higher of the function \({\sigma({\mathbf{u}};\lambda)}\) generate fields of hyperelliptic functions of \({\mathbf{u}} = (u_1,u_3)\) on the Jacobians of curves with a fixed parameter vector \(\lambda \). We consider three Hurwitz series \(\sigma({\mathbf{u}};\lambda)=\sum_{m,n\ge0}a_{m,n}(\lambda)\frac{u_1^mu_3^n}{m!n!}, \sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\xi_k(u_1;\lambda)\frac{u_3^k}{k!}\) and \(\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\mu_k(u_3;\lambda)\frac{u_1^k}{k!} \). The survey is devoted to the number-theoretic properties of the functions \(a_{m,n}(\lambda), \xi_k(u_1;\lambda)\) and \(\mu_k(u_3;\lambda)\). It includes the latest results, which proofs use the fundamental fact that the function \({\sigma ({\mathbf{u}};\lambda)}\) is determined by the system of four heat equations in a nonholonomic frame of six-dimensional space.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
14H30 Coverings of curves, fundamental group
14H40 Jacobians, Prym varieties
33E30 Other functions coming from differential, difference and integral equations
33-02 Research exposition (monographs, survey articles) pertaining to special functions

References:

[1] A. Adelberg, “Universal Higher Order Bernoulli Numbers and Kummer and Related Congruences”, J. Number Theory, 84:1 (2000), 119-135 · Zbl 0971.11004 · doi:10.1006/jnth.2000.2526
[2] A. Adelberg, “Kummer Congruences For Universal Bernoulli Numbers And Related Congruences For Poly-Bernoulli Numbers”, Int. Math. J., 1:1 (2002), 53-63 · Zbl 0984.11012
[3] A. Adelberg, “Universal Kummer congruences mod prime powers”, J. Number Theory, 109:2 (2004), 362-378 · Zbl 1073.11012 · doi:10.1016/j.jnt.2004.07.005
[4] T. Ayano, V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma function”, Funct. Anal. Appl., 53:3 (2019), 157-173 · Zbl 1444.32011 · doi:10.1134/S0016266319030018
[5] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301-384 · JFM 29.0394.03 · doi:10.2307/2369512
[6] H. F. Baker, “On a system of differential equations leading to periodic functions”, Acta Math., 27 (1903), 135-156 · JFM 34.0464.03 · doi:10.1007/BF02421301
[7] H. F. Baker, An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1907 · JFM 38.0478.05
[8] H. F. Baker, Abelian functions. Abel’s theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 · Zbl 0848.14012
[9] V. M. Buchstaber, “The Chern-Dold Character in Cobordisms, I”, Math. USSR Sbornik, 12:4 (1970), 573-594 · Zbl 0219.57027 · doi:10.1070/SM1970v012n04ABEH000939
[10] V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg-de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176-200, arXiv: · Zbl 1360.14093 · doi:10.1134/S0081543816060110
[11] V. M. Buchstaber, E. Yu. Bunkova, Lie algebras of heat operators in nonholonomic frame, 28 Nov 2019, arXiv: · Zbl 1450.37064
[12] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, AMS Trans., 179, no. 2, eds. V. M. Buchstaber, S. P. Novikov, 1997, 1-33 · Zbl 0911.14020
[13] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews in Mathematics and Math. Physics, 10, no. 2, eds. I. M. Krichever, S. P. Novikov, Gordon and Breach, London, 1997, 3-120 · Zbl 0911.14019
[14] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Rational analogues of Abelian functions”, Functional Anal. Appl., 33:2 (1999), 83-94 · Zbl 1056.14049 · doi:10.1007/BF02465189
[15] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, Multi-dimensional sigma functions, 5 Aug 2012, arXiv:
[16] V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524-1563 · Zbl 1362.14047 · doi:10.1070/SM2015v206n11ABEH004504
[17] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-variable sigma-functions: old and new results, 25 Oct 2018, arXiv:
[18] V. M. Buchstaber, D. V. Leykin, “Heat Equations in a Nonholonomic Frame”, Funct. Anal. Appl., 38:2 (2004), 88-101 · Zbl 1069.47019 · doi:10.1023/B:FAIA.0000034039.92913.8a
[19] V. M. Buchstaber, D. V. Leykin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proceedings of the Steklov Math. Inst., 251 (2005), 49-120 · Zbl 1132.14024
[20] V. M. Buchstaber, D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of \((n,s)\)-curves”, Funct. Anal. Appl., 42:4 (2008), 268-278 · Zbl 1156.14315 · doi:10.1007/s10688-008-0040-4
[21] E. Yu. Bunkova, Weierstrass Sigma Function Coefficients Divisibility Hypothesis, 2017, arXiv:
[22] F. Clarke, “The universal von Staudt theorems”, Transactions of the American Mathematical Society, 315:2 (1989), 591-603 · Zbl 0683.10013 · doi:10.1090/S0002-9947-1989-0986687-3
[23] A. V. Domrin, “Uniqueness theorem for the two-dimensional sigma function”, Funct. Anal. Appl., 54:1 (2020) · Zbl 1452.30015 · doi:10.1134/S0016266320010037
[24] J. C. Eilbeck, J. Gibbons, Y. Ônishi, S. Yasuda, Theory of Heat Equations for Sigma Functions, 2018, arXiv:
[25] J. C. Eilbeck, Y. Ônishi, Recursion relations on the power series expansion of the universal Weierstrass sigma function, RIMS Kôkyûroku Bessatsu, 2019 · Zbl 1455.33011
[26] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, 1966 · Zbl 0138.42001
[27] A. Hurwitz, “Ueber die Entwickelungscoefficienten der lemniscatischen Functionen”, Math. Ann., 51 (1898), 196-226 · JFM 29.0385.02 · doi:10.1007/BF01453637
[28] F. Klein, “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 27:3 (1886), 431-464 · JFM 18.0418.02 · doi:10.1007/BF01445285
[29] F. Klein, “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 32:3 (1888), 351-380 · JFM 20.0491.01 · doi:10.1007/BF01443606
[30] F. Klein, “Vorbemerkungen zu den Arbeiten über hyperelliptische und Abelsche Funktionen”, Gesammele Mathematische Abhandlungen, v. 3, Teubner, Berlin, 1923, 317-322 · JFM 49.0011.02 · doi:10.1007/978-3-642-61949-6_19
[31] F. Klein, “Über hyperelliptische Sigmafunktionen”, Gesammelte Mathematische Abhandlungen, v. 3, Teubner, Berlin, 1923, 323-387 · JFM 49.0011.02 · doi:10.1007/978-3-642-61949-6_20
[32] M. Lazard, “Sur les groupes de Lie formels a un parametre.”, Bull. Soc. Math. France, 83 (1955), 251-274 · Zbl 0068.25703 · doi:10.24033/bsmf.1462
[33] A. Nakayashiki, “On algebraic expressions of sigma functions for \((n,s)\) curves”, Asian J. Math., 14:2 (2010), 175-212, arXiv: · Zbl 1214.14028 · doi:10.4310/AJM.2010.v14.n2.a2
[34] A. Nakayashiki, “Sigma function as a tau function”, Int. Math. Res. Not., 2010:3 (2009), 373-394, arXiv: · Zbl 1197.14049 · doi:10.1093/imrn/rnp135
[35] A. Nakayashiki, “Tau Function Approach to Theta Functions”, Int. Math. Res. Not., 2016:17 (2016), 5202-5248 · Zbl 1404.32028 · doi:10.1093/imrn/rnv297
[36] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827-913 · Zbl 0176.52401 · doi:10.1070/IM1967v001n04ABEH000591
[37] Y. Ônishi, Universal elliptic functions
[38] Y. Ônishi, “Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers”, Russian Mathematical Surveys, 66:5 (2011), 871-932 · Zbl 1238.11024 · doi:10.1070/RM2011v066n05ABEH004763
[39] Y. Ônishi, “Arithmetical Power Series Expansion of the Sigma Function for a Plane Curve”, Proceedings of the Edinburgh Mathematical Society, 61:4 (2018), 995-1022 · Zbl 1472.11186 · doi:10.1017/S0013091517000463
[40] B. P. Platonov, M. M. Petrunin, “On the torsion problem in Jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 86:2 (2012), 642-643 · Zbl 1345.11045 · doi:10.1134/S1064562412050304
[41] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1-34 · Zbl 1305.11096 · doi:10.1070/RM2014v069n01ABEH004877
[42] V. P. Platonov, G. V. Fedorov, “An Infinite Family of Curves of Genus 2 over the Field of Rational Numbers Whose Jacobian Varieties Contain Rational Points of Order 28”, Dokl. Math., 98:2 (2018), 468-471 · Zbl 1427.14062 · doi:10.1134/S1064562418060182
[43] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293-1298 · Zbl 0199.26705 · doi:10.1090/S0002-9904-1969-12401-8
[44] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer, 1986 · Zbl 0585.14026 · doi:10.1007/978-1-4757-1920-8
[45] K. Weierstrass, “Zur theorie der elliptischen functionen”, Mathmatische Werke, 2 (1894), 245-255
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.