×

Polynomial dynamical systems and the Korteweg-de Vries equation. (English. Russian original) Zbl 1360.14093

Proc. Steklov Inst. Math. 294, 176-200 (2016); translation from Tr. Mat. Inst. Steklova 294, 191-215 (2016).
In this paper, the author constructs explicitly polynomial vector fields \(L_k\), \(k=0, 1, 2, 3, 4, 6\) on the complex linear space \(\mathbb{C}^6\) with coordinates \(X=(x_2, x_3, x_4)\) and \(Z=(z_4, z_5, z_6)\). The fields \(L_k\) are linearly independent outside their discriminant variety \(\Delta\subset \mathbb{C}^6\) and tangent to this variety. He describes a polynomial Lie algebra of the fields \(L_k\) and the structure of the polynomial ring \(\mathbb{C}[X, Z]\) as a graded module with two generators \(x_2\) and \(z_4\) over this algebra. The fields \(L_1\) and \(L_3\) commute. Any polynomial \(P(X, Z)\in\mathbb{C}[X, Z]\) determines a hyperelliptic function \(P(X, Z)(u1, u3)\) of genus \(2\), where u1 and \(u_3\) are coordinates of trajectories of the fields \(L_1\) and \(L_3\). The function \(2x_2(u_1, u_3)\) is a \(2\)-zone solution of the Korteweg-de Vries (KdV) hierarchy and \(\frac{\partial}{\partial u_1} z_4(u_1, u_3)=\frac{\partial}{\partial u_3} x_2(u_1, u_3)\). In general, the present work belongs to a large field of research at the junction of the analytic theory of Riemann surfaces, abelian functions, and the theory of integrable systems. The paper is supported by two appendices describing the necessary information about elliptic sigma functions and sigma-functions of genus two curves.

MSC:

14H70 Relationships between algebraic curves and integrable systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] M. J. Ablowitz, S. Chakravarty, and R. Halburd, “The generalized Chazy equation from the self-duality equations, ” Stud. Appl. Math. 103 (1), 75-88 (1999). · Zbl 1136.34301 · doi:10.1111/1467-9590.00121
[2] H. F. Baker, “On the hyperelliptic sigma functions, ” Am. J. Math. 20, 301-384 (1898). · JFM 29.0394.03 · doi:10.2307/2369512
[3] H. F. Baker, “On a system of differential equations leading to periodic functions, ” Acta Math. 27, 135-156 (1903). · JFM 34.0464.03 · doi:10.1007/BF02421301
[4] H. F. Baker, An Introductionto the Theory of Multiply Periodic Functions (Univ. Press, Cambridge, 1907). · JFM 38.0478.05
[5] Buchstaber, V. M.; Enolskiĭ, V. Z.; Leĭkin, D. V., Hyperelliptic Kleinian functions and applications (1997), Providence, RI · Zbl 0911.14020 · doi:10.1090/trans2/179
[6] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications, ” Rev. Math. Math. Phys. 10 (2), 3-120 (1997). · Zbl 0911.14019
[7] V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, “Multi-dimensional sigma-functions,” arXiv: 1208.0990 [math-ph]. · Zbl 1473.14057
[8] V. M. Buchstaber and D. V. Leykin, “Polynomial Lie algebras, ” Funkts. Anal. Prilozh. 36 (4), 18-34 (2002) [Funct. Anal. Appl. 36, 267-280 (2002)]. · Zbl 1027.17020 · doi:10.4213/faa216
[9] V. M. Buchstaber and D. V. Leykin, “Heat equations in a nonholonomic frame, ” Funkts. Anal. Prilozh. 38 (2), 12-27 (2004) [Funct. Anal. Appl. 38, 88-101 (2004)]. · Zbl 1069.47019 · doi:10.4213/faa104
[10] V. M. Buchstaber and D. V. Leykin, “Addition laws on Jacobian varieties of plane algebraic curves, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 251, 54-126 (2005) [Proc. Steklov Inst. Math. 251, 49-120 (2005)]. · Zbl 1132.14024
[11] V. M. Buchstaber and D. V. Leikin, “Differentiation of Abelian functions with respect to parameters, ” Usp. Mat. Nauk 62 (4), 153-154 (2007) [Russ. Math. Surv. 62, 787-789 (2007)]. · Zbl 1152.14044 · doi:10.4213/rm7598
[12] V. M. Buchstaber and D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of (<Emphasis Type=”Italic“>n, <Emphasis Type=”Italic“>s)-curves, ” Funkts. Anal. Prilozh. 42 (4), 24-36 (2008) [Funct. Anal. Appl. 42, 268-278 (2008)]. · Zbl 1156.14315 · doi:10.4213/faa2926
[13] E. Yu. Bunkova and V. M. Buchstaber, “Polynomial dynamical systems and ordinary differential equations associated with the heat equation, ” Funkts. Anal. Prilozh. 46 (3), 16-37 (2012) [Funct. Anal. Appl. 46, 173-190 (2012)]. · Zbl 1275.35012 · doi:10.4213/faa3077
[14] B. A. Dubrovin and S. P. Novikov, “A periodicity problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry, ” Dokl. Akad. Nauk SSSR 219 (3), 531-534 (1974) [Sov. Math., Dokl. 15, 1597-1601 (1974)]. · Zbl 0312.35015
[15] F. G. Frobenius and L. Stickelberger, “Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten, ” J. Reine Angew. Math. 92, 311-327 (1882). · JFM 14.0388.01
[16] I. M. Gel’fand and L. A. Dikii, “Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, ” Usp. Mat. Nauk 30 (5), 67-100 (1975) [Russ. Math. Surv. 30 (5), 77-113 (1975)]. · Zbl 0334.58007
[17] R. W. H. T. Hudson, Kummer’sQuartic Surface (Cambridge Univ. Press, Cambridge, 1905, 1990). · Zbl 0716.14025
[18] N. A. Kudryashov, AnalyticalTheory of Nonlinear Differential Equations (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2004) [in Russian].
[19] S. P. Novikov, “The periodic problem for the Korteweg-de Vries equation, ” Funkts. Anal. Prilozh. 8 (3), 54-66 (1974) [Funct. Anal. Appl. 8, 236-246 (1974)]. · Zbl 0299.35017
[20] O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras, ” Teor. Mat. Fiz. 185 (3), 527-544 (2015) [Theor. Math. Phys. 185, 1816-1831 (2015)]. · Zbl 1417.37246 · doi:10.4213/tmf8894
[21] O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 191-201 (2015) [Proc. Steklov Inst. Math. 290, 178-188 (2015)]; “Correction,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 325-327 (2016). · Zbl 1395.17073
[22] O. K. Sheinman, “Lax operator algebras and integrable systems, ” Usp. Mat. Nauk 71 (1), 117-168 (2016) [Russ. Math. Surv. 71, 109-156 (2016)]. · Zbl 1395.17047 · doi:10.4213/rm9703
[23] Weierstrass, K., Zur Theorie der elliptischen Functionen, 245-255 (1895), Berlin · JFM 26.0489.01
[24] Weierstrass, K., Die Abelschen Functionen, 439-624 (1902), Berlin
[25] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part II: The Transcendental Functions, Repr. of the 4th ed. 1927 (Cambridge Univ. Press, Cambridge, 1996). · Zbl 0951.30002 · doi:10.1017/CBO9780511608759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.