×

Ultraelliptic integrals and two-dimensional sigma functions. (English. Russian original) Zbl 1444.32011

Funct. Anal. Appl. 53, No. 3, 157-173 (2019); translation from Funkts. Anal. Prilozh. 53, No. 3, 3-22 (2019).
The paper is devoted to the classical problem of inversion of ultraelliptic integrals given by basic holomorphic differentials on a curve of genus \(2\). Basic solutions \(F\) and \(G\) of this problem are obtained from a single-valued \(4\)-periodic meromorphic function on the abelian covering \(W\) of the universal hyperelliptic curve of genus \(2\). Here \(W\) is the nonsingular analytic curve \(W=\{u=(u_1,u_3)\in\mathbb{C}^2 : \sigma(u)=0\}\), where \(\sigma(u)\) is the two-dimensional sigma function. The gradient \(\nabla\sigma(u)=(\sigma_1(u), \sigma_3(u))\), where \(\sigma_i(u)=\frac{\partial\sigma(u)}{\sigma u_i}\), does not vanish at any point of the curve \(W\) (therefore \(W\) does not have singular points). The authors show that \(G(z)=F(\xi(z))\), where \(z\) is a local coordinate in a neighborhood of a point of the smooth curve \(W\) and \(\xi(z)\) is the smooth function in this neighborhood given by the equation \(\sigma(u_1, \xi(u_1))=0\). They obtain differential equations for the functions \(F(z)\), \(G(z)\), and \(\xi(z)\), recurrent formulas for the coefficients of the series expansions of these functions, and a transformation of the function \(G(z)\) into the Weierstrass elliptic function \(\wp\) under a deformation of a curve of genus \(2\) into an elliptic curve. This paper is organized as follows: Section 1 is an introduction to the subject. Section 2 deals with the sigma function. Section 3 tackles the field of meromorphic functions on the sigma divisor. Sections 4, 5 and 6 deals with some ultraelliptic integrals and relationship with a curve of genus \(1\). Section 7 contains an application of the addition theorem. For the two-dimensional sigma function, the addition theorem holds.

MSC:

32G05 Deformations of complex structures
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg-de Vries equation,” Comm. Math. Phys., 61:1978 (1978), 1-30. · Zbl 0428.35067 · doi:10.1007/BF01609465
[2] T. Ayano and V. M. Buchstaber, “Construction of two parametric deformation of KdV-hierarchy and solution in terms of meromorphic functions on the sigma divisor of a hyperelliptic curve of genus 3,” SIGMA, 15 (2019), 032; https://arxiv.org/abs/1811.07138. · Zbl 1420.14104
[3] H. F. Baker, An Introduction to the Theory of Multiply-Periodic Functions, Cambridge Univ. Press, Cambridge, 1907. · JFM 38.0478.05
[4] A. B. Bogatyrev, “Conformal mapping of rectangular heptagons,” Mat. Sb., 203:2012 (2012), 35-56; English transl.: Sb. Math., 203:12 (2012), 1715-1735. · Zbl 1268.14030 · doi:10.4213/sm8087
[5] A. B. Bogatyrev and O. A. Grigor’ev, “Conformal mapping of rectangular heptagons II,” Comput. Methods Funct. Theory, 18:2018 (2018), 221-238. · Zbl 1395.30008 · doi:10.1007/s40315-017-0217-z
[6] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications,” in: Reviews in Mathematics and Math. Physics, v. 10, part 2, Gordon and Breach, London, 1997, 3-120. · Zbl 0911.14019
[7] Buchstaber, V. M.; Enolskii, V. Z.; Leikin, D. V., Hyperelliptic Kleinian functions and applications, No. 2, 1-33 (1997), Providence, RI · Zbl 0911.14020
[8] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Rational analogues of Abelian functions,” Funkts. Anal. Prilozhen., 33:1999 (1999), 1-15; English transl.: Functional Anal. Appl., 33:2 (1999), 83-94. · Zbl 1056.14049 · doi:10.4213/faa348
[9] V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, Multi-dimensional sigma-functions, https://arxiv.org/abs/1208.0990. · Zbl 1473.14057
[10] Buchstaber, V. M., Polynomial dynamical systems and the Korteweg-de Vries equation, 191-215 (2016), Moscow · Zbl 1360.14093
[11] Buchstaber, V. M.; Enolski, V. Z.; Leykin, D. V., Sigma-functions: old and new results (2019), Cambridge · Zbl 1473.14057
[12] V. Z. Enolski, E. Hackmann, V. Kagramanova, J. Kunz, and C. Lammerzahl, “Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity,” J. Geom. Phys., 61:2011 (2011), 899-921. · Zbl 1213.83039 · doi:10.1016/j.geomphys.2011.01.001
[13] V. Enolski, B. Hartmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, and P. Sirimachan, “Inversion of a general hyperelliptic integral and particle motion in Horava-Lifshitz black hole space-times,” J. Math. Phys., 53:1 (2012), 012504. · Zbl 1273.83099 · doi:10.1063/1.3677831
[14] V. Z. Enolskii, M. Pronine, and P. H. Richter, “Double pendulum and <Emphasis Type=”Italic“>θ-divisor,” J. Nonlinear Sci., 13:2003 (2003), 157-174. · Zbl 1021.37039 · doi:10.1007/s00332-002-0514-0
[15] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, Springer-Verlag, Berlin-New York, 1973. · Zbl 0281.30013 · doi:10.1007/BFb0060090
[16] D. Grant, “A generalization of Jacobi’s derivative formula to dimension two,” J. Reine Angew. Math., 392 (1988), 125-136. · Zbl 0646.14033
[17] D. Grant, “A generalization of a formula of Eisenstein,” Proc. London Math. Soc., 62:1991 (1991), 121-132. · Zbl 0738.14019 · doi:10.1112/plms/s3-62.1.121
[18] E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes,” Phys. Rev. D, 78 (2008), 124018. · doi:10.1103/PhysRevD.78.124018
[19] E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Analytic solutions of the geodesic equation in axially symmetric space-times,” EPL (Europhysics Letters), 88:3 (2009), 30008. · doi:10.1209/0295-5075/88/30008
[20] E. Hackmann and C. Lämmerzahl, “Complete analytic solution of the geodesic equation in Schwarzschild-(anti-)de Sitter spacetimes,” Phys. Rev. Lett., 100 (2008), 171101. · Zbl 1228.83023 · doi:10.1103/PhysRevLett.100.171101
[21] E. Hackmann and C. Laämmerzahl, “Geodesic equation in Schwarzschild-(anti-)de Sitter spacetimes: analytical solutions and applications,” Phys. Rev. D, 78 (2008), 024035. · doi:10.1103/PhysRevD.78.024035
[22] E. Hackmann, C. Laämmerzahl, V. Kagramanova, and J. Kunz, “Analytical solution of the geodesic equation in Kerr-(anti-)de Sitter space-times,” Phys. Rev. D, 81 (2010), 044020. · doi:10.1103/PhysRevD.81.044020
[23] J. Jorgenson, “On directional derivatives of the theta function along its divisor,” Israel J. Math., 77:1992 (1992), 273-284. · Zbl 0790.30038 · doi:10.1007/BF02773692
[24] A. I. Markushevich, Introduction to the Classical Theory of Abelian Functions, Trans. Math. Monographs, vol. 96, Amer. Math. Soc., Providence, RI, 1992. · Zbl 0743.14033
[25] S. Matsutani, “Recursion relation of hyperelliptic psi-functions of genus two,” Integral Transforms Spec. Funct., 14:2003 (2003), 517-527. · Zbl 1041.11047 · doi:10.1080/10652460310001600609
[26] A. Nakayashiki, “On algebraic expressions of sigma functions for (<Emphasis Type=”Italic“>n, s) curves,” Asian J. Math., 14:2010 (2010), 175-212; https://arxiv.org/abs/0803.2083. · Zbl 1214.14028 · doi:10.4310/AJM.2010.v14.n2.a2
[27] Y. Onishi, “Complex multiplication formulae for hyperelliptic curves of genus three,” Tokyo J. Math., 21:1998 (1998), 381-431. · Zbl 1016.11019 · doi:10.3836/tjm/1270041822
[28] Y. Onishi, “Determinant expressions for Abelian functions in genus two,” Glasg. Math. J., 44:2002 (2002), 353-364. · Zbl 1101.14312 · doi:10.1017/S001708950203001X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.