×

Blow-up and global existence for solutions to the porous medium equation with reaction and slowly decaying density. (English) Zbl 1441.35073

Summary: We study existence of global solutions and finite time blow-up of solutions to the Cauchy problem for the porous medium equation with a variable density \(\rho(x)\) and a power-like reaction term \(\rho(x) u^p\) with \(p > 1\); this is a mathematical model of a thermal evolution of a heated plasma (see [S. Kamin and P. Rosenau, J. Math. Phys. 23, 1385–1390 (1982; Zbl 0499.76111)]). The density decays slowly at infinity, in the sense that \(\rho(x) \lesssim | x |^{- q}\) as \(| x | \to + \infty\) with \(q \in [0, 2)\). We show that for large enough initial data, solutions blow-up in finite time for any \(p > 1\). On the other hand, if the initial datum is small enough and \(p > \overline{p}\), for a suitable \(\overline{p}\) depending on \(\rho, m, N\), then global solutions exist. In addition, if \(p < \underline p\), for a suitable \(\underline p \leq \overline{p}\) depending on \(\rho, m, N\), then the solution blows-up in finite time for any nontrivial initial datum; we need the extra hypothesis that \(q \in [0, \epsilon)\) for \(\epsilon > 0\) small enough, when \(m \leq p < \underline p\). Observe that \(\underline p = \overline{p}\), if \(\rho(x)\) is a multiple of \(| x |^{- q}\) for \(| x |\) large enough. Such results are in agreement with those established in [A. A. Samarskii et al., Blow-up in quasilinear parabolic equations. Transl. from the Russian by Michael Grinfeld. Berlin: Walter de Gruyter (1995; Zbl 1020.35001)], where \(\rho(x) \equiv 1\), and are related to some results in [A. V. Martynenko et al., “On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source”, Zh. Vychisl. Mat. Mat. Fiz. 48, No. 7, 1214–1229 (2008); Izv. Math. 76, No. 3, 563–580 (2012; Zbl 1255.35146); translation from Izv. Ross. Akad. Nauk, Ser. Mat 76, No. 3, 139–156 (2012)]. The case of fast decaying density at infinity, i.e. \(q \geq 2\), is examined in [the authors, J. Differ. Equations 269, No. 10, 8918–8958 (2020; Zbl 07216772)].

MSC:

35B44 Blow-up in context of PDEs
35B51 Comparison principles in context of PDEs
35K57 Reaction-diffusion equations
35K59 Quasilinear parabolic equations
35K65 Degenerate parabolic equations

References:

[1] Afanasieva, N. V.; Tedeev, A. F., Fujita type theorems for quasilinear parabolic equations with initial data slowly decaying to zero, Mat. Sb.. Mat. Sb., Sb. Math., 195, 459-478 (2004), English transl. · Zbl 1073.35028
[2] Andreucci, D., Degenerate parabolic equations with initial data measures, Trans. Am. Math. Soc., 340, 3911-3923 (1997) · Zbl 0885.35056
[3] Andreucci, D.; Tedeev, A. F., Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differ. Equ., 10, 89-120 (2005) · Zbl 1122.35042
[4] Aronson, D.; Crandall, M. G.; Peletier, L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal., 6, 1001-1022 (1982) · Zbl 0518.35050
[5] Chen, X.; Fila, M.; Guo, J. S., Boundedness of global solutions of a supercritical parabolic equation, Nonlinear Anal., 68, 621-628 (2008) · Zbl 1128.35057
[6] Deng, K.; Levine, H. A., The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., 243, 85-126 (2000) · Zbl 0942.35025
[7] de Pablo, A.; Reyes, G.; Sanchez, A., The Cauchy problem for a nonhomogeneous heat equation with reaction, Discrete Contin. Dyn. Syst., Ser. A, 33, 643-662 (2013) · Zbl 1439.35265
[8] Eidus, D., The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium, J. Differ. Equ., 84, 309-318 (1990) · Zbl 0707.35074
[9] Eidus, D.; Kamin, S., The filtration equation in a class of functions decreasing at infinity, Proc. Am. Math. Soc., 120, 825-830 (1994) · Zbl 0791.35065
[10] Fujishima, Y.; Ishige, K., Blow-up set for type I blowing up solutions for a semilinear heat equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 31, 231-247 (2014) · Zbl 1297.35052
[11] Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t = \operatorname{\Delta} u + u^{1 + \alpha} \), J. Fac. Sci., Univ. Tokyo Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[12] Galaktionov, V. A.; Vázquez, J. L., Continuation of blowup solutions of nonlinear heat equations in several dimensions, Commun. Pure Appl. Math., 50, 1-67 (1997) · Zbl 0874.35057
[13] Grillo, G.; Muratori, M., Smoothing effects for the porous medium equation on Cartan-Hadamard manifolds, Nonlin. Anal., TMA, 131, 346-362 (2016) · Zbl 1330.58025
[14] Grillo, G.; Muratori, M.; Porzio, M. M., Porous media equations with two weights: existence, uniqueness, smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst., Ser. A, 33, 3599-3640 (2013) · Zbl 1277.35217
[15] Grillo, G.; Muratori, M.; Punzo, F., On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density, Discrete Contin. Dyn. Syst., Ser. A, 35, 5927-5962 (2015) · Zbl 1336.35057
[16] Grillo, G.; Muratori, M.; Punzo, F., Fractional porous media equations: existence and uniqueness of weak solutions with measure data, Calc. Var. Partial Differ. Equ., 54, 3303-3335 (2015) · Zbl 1333.35322
[17] Grillo, G.; Muratori, M.; Punzo, F., Blow-up and global existence for the porous medium equation with reaction on a class of Cartan-Hadamard manifolds, J. Differ. Equ., 266, 4305-4336 (2019) · Zbl 1405.35234
[18] Hayakawa, K., On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad., 49, 503-505 (1973) · Zbl 0281.35039
[19] Ishige, K., An intrinsic metric approach to uniqueness of the positive Dirichlet problem for parabolic equations in cylinders, J. Differ. Equ., 158, 251-290 (1999) · Zbl 0956.35060
[20] Ishige, K., An intrinsic metric approach to uniqueness of the positive Cauchy-Neumann problem for parabolic equations, J. Math. Anal. Appl., 276, 763-790 (2002) · Zbl 1106.35310
[21] Ishige, K.; Murata, M., Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 30, 171-223 (2001) · Zbl 1024.35010
[22] Kamin, S.; Kersner, R.; Tesei, A., On the Cauchy problem for a class of parabolic equations with variable density, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 9, 279-298 (1998) · Zbl 0926.35045
[23] Kamin, S.; Pozio, M. A.; Tesei, A., Admissible conditions for parabolic equations degenerating at infinity, St. Petersburg Math. J., 19, 239-251 (2008) · Zbl 1152.35413
[24] Kamin, S.; Punzo, F., Prescribed conditions at infinity for parabolic equations, Commun. Contemp. Math., 17, 1-19 (2015) · Zbl 1333.35085
[25] Kamin, S.; Punzo, F., Dirichlet conditions at infinity for parabolic and elliptic equations, Nonlinear Anal., 138, 156-175 (2016) · Zbl 1386.35181
[26] Kamin, S.; Reyes, G.; Vázquez, J. L., Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density, Discrete Contin. Dyn. Syst., Ser. A, 26, 521-549 (2010) · Zbl 1196.35052
[27] Kamin, S.; Rosenau, P., Propagation of thermal waves in an inhomogeneous medium, Commun. Pure Appl. Math., 34, 831-852 (1981) · Zbl 0458.35042
[28] Kamin, S.; Rosenau, P., Nonlinear diffusion in a finite mass medium, Commun. Pure Appl. Math., 35, 113-127 (1982) · Zbl 0469.35060
[29] Kamin, S.; Rosenau, P., Nonlinear thermal evolution in an inhomogeneous medium, J. Math. Phys., 23, 1385-1390 (1982) · Zbl 0499.76111
[30] Levine, H. A., The role of critical exponents in blow-up theorems, SIAM Rev., 32, 262-288 (1990) · Zbl 0706.35008
[31] Lie, X.; Hiang, Z., Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation, Commun. Pure Appl. Anal., 13, 1465-1480 (2014) · Zbl 1284.35071
[32] Martynenko, A. V.; Tedeev, A. F., On the behavior of solutions of the Cauchy problem for a degenerate parabolic equation with nonhomogeneous density and a source, Zh. Vychisl. Mat. Mat. Fiz.. Zh. Vychisl. Mat. Mat. Fiz., Comput. Math. Math. Phys., 48, 7, 1145-1160 (2008), transl. in · Zbl 07814519
[33] Martynenko, A. V.; Tedeev, A. F.; Shramenko, V. N., The Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source in the class of slowly vanishing initial functions, Izv. Ross. Akad. Nauk, Ser. Mat.. Izv. Ross. Akad. Nauk, Ser. Mat., Izv. Math., 76, 3, 563-580 (2012), transl. in · Zbl 1255.35146
[34] Martynenko, A. V.; Tedeev, A. F.; Shramenko, V. N., On the behavior of solutions of the Cauchy problem for a degenerate parabolic equation with source in the case where the initial function slowly vanishes, 64, 1698-1715 (2013) · Zbl 1273.35167
[35] Mastrolia, P.; Monticelli, D. D.; Punzo, F., Nonexistence of solutions to parabolic differential inequalities with a potential on Riemannian manifolds, Math. Ann., 367, 929-963 (2017) · Zbl 1365.35191
[36] G. Meglioli, F. Punzo, Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density, preprint, 2019.
[37] Mitidieri, E. L.; Pohozaev, S. I., A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova. Tr. Mat. Inst. Steklova, Proc. Steklov Inst. Math., 234, 1-362 (2001), translation in · Zbl 1074.35500
[38] Mitidieri, E. L.; Pohozaev, S. I., Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72, 129-162 (2004) · Zbl 1115.35157
[39] Mizoguchi, N.; Quirós, F.; Vázquez, J. L., Multiple blow-up for a porous medium equation with reaction, Math. Ann., 350, 801-827 (2011) · Zbl 1233.35049
[40] Pohozaev, S. I.; Tesei, A., Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 11, 99-109 (2000) · Zbl 1007.35003
[41] Pozio, M. A.; Tesei, A., On the uniqueness of bounded solutions to singular parabolic problems, Discrete Contin. Dyn. Syst., Ser. A, 13, 117-137 (2005) · Zbl 1165.35403
[42] Punzo, F., On the Cauchy problem for nonlinear parabolic equations with variable density, J. Evol. Equ., 9, 429-447 (2009) · Zbl 1239.35078
[43] Quittner, P., The decay of global solutions of a semilinear heat equation, Discrete Contin. Dyn. Syst., 21, 307-318 (2008) · Zbl 1149.35321
[44] Reyes, G.; Vázquez, J. L., The Cauchy problem for the inhomogeneous porous medium equation, Netw. Heterog. Media, 1, 337-351 (2006) · Zbl 1124.35035
[45] Reyes, G.; Vázquez, J. L., The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions, Commun. Pure Appl. Anal., 7, 1275-1294 (2008) · Zbl 1157.35412
[46] Reyes, G.; Vázquez, J. L., Long time behavior for the inhomogeneous PME in a medium with slowly decaying density, Commun. Pure Appl. Anal., 8, 493-508 (2009) · Zbl 1169.35313
[47] Sacks, P. A., Global behavior for a class of nonlinear evolution equations, SIAM J. Math. Anal., 16, 233-250 (1985) · Zbl 0572.35062
[48] Samarskii, A. A.; Galaktionov, V. A.; Kurdyumov, S. P.; Mikhailov, A. P., Blow-up in Quasilinear Parabolic Equations, De Gruyter Expositions in Mathematics, vol. 19 (1995), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin · Zbl 1020.35001
[49] Souplet, P., Morrey spaces and classification of global solutions for a supercritical semilinear heat equation in \(\mathbb{R}^n\), J. Funct. Anal., 272, 2005-2037 (2017) · Zbl 1372.35157
[50] Tedeev, A. F., Conditions for global time existence and nonexistence of compact support of solutions to the Cauchy problem for quasilinear degenerate parabolic equations, Sib. Mat. Zh., 45, 189-200 (2004) · Zbl 1053.35071
[51] Vázquez, J. L., The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 15, 281-300 (2004) · Zbl 1162.35392
[52] Vázquez, J. L., The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs (2007), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press Oxford · Zbl 1107.35003
[53] Yanagida, E., Behavior of global solutions of the Fujita equation, Sūgaku Expo., 26, 129-147 (2013) · Zbl 1292.35151
[54] Wang, C.; Zheng, S., Critical Fujita exponents of degenerate and singular parabolic equations, Proc. R. Soc. Edinb., Sect. A, 136, 415-430 (2006) · Zbl 1104.35015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.