×

On the behavior of solutions of the Cauchy problem for a degenerate parabolic equation with source in the case where the initial function slowly vanishes. (English. Ukrainian original) Zbl 1273.35167

Ukr. Math. J. 64, No. 11, 1698-1715 (2013); translation from Ukr. Mat. Zh. 64, No. 11, 1500-1515 (2012).
Summary: We study the Cauchy problem for a degenerate parabolic equation with source and inhomogeneous density of the form \[ u_t=\mathrm{div}(\rho(x)u^{m-1}| Du|^{\lambda-1}Du)+u^p \] in the case where the initial function slowly vanishes as \(| x|\rightarrow\infty\). We establish conditions for the existence and nonexistence of a global (in time) solution. These conditions strongly depend on the behavior of the initial data as \(| x|\rightarrow\infty\). In the case of global solvability, we establish a sharp estimate of the solution for large times.

MSC:

35K65 Degenerate parabolic equations
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI

References:

[1] H. Fujita, “On the blowing up of solutions to the Cauchy problem for <Emphasis Type=”Italic“>u <Emphasis Type=”Italic“>t = ∆<Emphasis Type=”Italic“>u + <Emphasis Type=”Italic“>u1 + α,” J. Fac. Sci. Univ. Tokyo, Sec. I, 13, 109-124 (1966). · Zbl 0163.34002
[2] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, “On unbounded solutions of the Cauchy problem for the parabolic equation <Emphasis Type=”Italic“>u <Emphasis Type=”Italic“>t = ∇(<Emphasis Type=”Italic“>uσ∇<Emphasis Type=”Italic“>u)<Emphasis Type=”Italic“>u + <Emphasis Type=”Italic“>uβ;” Dokl. Akad. Nauk SSSR, 252, No. 6, 1362-1364 (1980).
[3] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Modes with Peaking in the Problems for Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1987). · Zbl 0631.35002
[4] D. Andreucci and E. Di Benedetto, “On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources equations,” Ann. Sci. Norm. Super. Pisa, 18, 363-441 (1991). · Zbl 0762.35052
[5] V. A. Galaktionov, “On the conditions of absence of global solutions for a class of quasilinear parabolic equations,” Zh. Vychisl. Mat. Mat. Fiz., 22, No. 2, 322-338 (1982). · Zbl 0501.35043
[6] V. A. Galaktionov and H. A. Levine, “A general approach to critical Fujita exponents and systems,” Nonlin. Anal., 34, 1005-1027 (1998). · Zbl 1139.35317 · doi:10.1016/S0362-546X(97)00716-5
[7] D. Andreucci and A. F. Tedeev, “A Fujita type result for degenerate Neumann problem in domains with noncompact boundary,” J. Math. Anal. Appl., 231, 543-567 (1999). · Zbl 0920.35079 · doi:10.1006/jmaa.1998.6253
[8] K. Hayakawa, “On nonexistence of global solutions of some semilinear parabolic differential equations,” Proc. Jpn. Acad., Ser. A, Math. Sci., 49, 503-505 (1973). · Zbl 0281.35039 · doi:10.3792/pja/1195519254
[9] H. A. Levine, “The role of critical exponents in blow up theorems,” SIAM Rev., 32, 262-288 (1990). · Zbl 0706.35008 · doi:10.1137/1032046
[10] K. Deng and H. A. Levine, “The role of critical exponents in blow up theorems: The sequel,” J. Math. Anal. Appl., 243, 85-126 (2000). · Zbl 0942.35025 · doi:10.1006/jmaa.1999.6663
[11] S. Kamin and P. Rosenau, “Nonlinear diffusion in a finite mass medium,” Comm. Pure Appl. Math., 35, 113-127 (1982). · Zbl 0469.35060 · doi:10.1002/cpa.3160350106
[12] S. Kamin and P. Rosenau, “Propagation of thermal waves in an inhomogeneous medium,” Comm. Pure Appl. Math., 34, 831-852 (1981). · Zbl 0458.35042 · doi:10.1002/cpa.3160340605
[13] S. Kamin and R. Kersner, “Disappearance of interfaces in finite time,” Meccanica, 28, 117-120 (1993). · Zbl 0786.76088 · doi:10.1007/BF01020323
[14] M. Guedda, D. Hilhorst, and M. A. Peletier, “Disappearing interfaces in nonlinear diffusion,” Adv. Math. Sci. Appl., 7, 695-710 (1997). · Zbl 0891.35071
[15] V. A. Galaktionov and J. R. King, “On the behavior of blow-up interfaces for an inhomogeneous filtration equation,” J. Appl. Math., 57, 53-77 (1996). · Zbl 0869.35076
[16] R. Kersner, G. Reyes, and A. Tesei, “On a class of nonlinear parabolic equations with variable density and absorption,” Adv. Different. Equat., 7, No. 2, 155-176 (2002). · Zbl 1223.35209
[17] V. A. Galaktionov, S. Kamin, R. Kersner, and J. L. Vazquez, “Intermediate asymptotics for inhomogeneous nonlinear heat conduction,” J. Math. Sci., 120, No. 3, 1277-1294 (2004). · Zbl 1205.35146 · doi:10.1023/B:JOTH.0000016049.94192.aa
[18] A. F. Tedeev, “Conditions for the existence and nonexistence of the global (in time) compact support of solutions to the Cauchy problem for quasilinear degenerating parabolic equations,” Sib. Mat. Zh., 45, No. 1, 189-200 (2004). · Zbl 1053.35071 · doi:10.1023/B:SIMJ.0000013021.66528.b6
[19] A. F. Tedeev, “The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations,” Appl. Anal., 86, No. 6, 755-782 (2007). · Zbl 1129.35044 · doi:10.1080/00036810701435711
[20] Y. W. Qi, “The critical exponents of parabolic equations and blow-up in <InlineEquation ID=”IEq2“> <EquationSource Format=”TEX“>\( {{\mathbb{R}}^n} \),” Proc. Roy. Soc. Edinburgh A, 128, 123-136 (1998). · Zbl 0892.35088 · doi:10.1017/S0308210500027190
[21] Y. W. Qi and M. X. Wang, “Critical exponents of quasilinear parabolic equations,” J. Math. Anal. Appl., 267, 264-280 (2002). · Zbl 1010.35005 · doi:10.1006/jmaa.2001.7771
[22] X. Liu and M. Wang, “The critical exponent of doubly singular parabolic equations,” J. Math. Anal. Appl., 257, 170-188 (2001). · Zbl 0984.35020 · doi:10.1006/jmaa.2000.7341
[23] D. Andreucci and A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations,” Adv. Different. Equat., 10, No. 1, 89-120 (2005). · Zbl 1122.35042
[24] A. V. Martynenko and A. F. Tedeev, “Cauchy problem for the quasilinear parabolic equation with source and inhomogeneous density,” Zh. Vychisl. Mat. Mat. Fiz., 47, No. 2, 245-255 (2007). · Zbl 1210.35156
[25] P. Cianci, A. V. Martynenko, and A. F. Tedeev, “The blow-up phenomenon for degenerate parabolic equations with variable coefficient and nonlinear source,” Nonlin. Anal.: Theory, Meth. Appl., 73, No. 7, 2310-2323 (2010). · Zbl 1195.35068 · doi:10.1016/j.na.2010.06.026
[26] A. V. Martynenko and A. F. Tedeev, “On the behavior of solutions of the Cauchy problem for the degenerating parabolic equation with inhomogeneous density and source,” Zh. Vychisl. Mat. Mat. Fiz., 48, No. 7, 1214-1229 (2008). · Zbl 07814519
[27] C. Wang and S. Zheng, “Critical Fujita exponents of degenerate and singular parabolic equations coefficient and nonlinear source,” Proc. Roy. Soc. Edinburgh, A, 136, 415-430 (2006). · Zbl 1104.35015 · doi:10.1017/S0308210500004637
[28] K. Mukai, K. Mochuzuki, and Q. Huang, “Large time behavior and life span for a quasilinear parabolic equation with slow decay initial values,” Nonlin. Anal., 39A, No. 1, 33-45 (2000). · Zbl 0936.35034 · doi:10.1016/S0362-546X(98)00161-8
[29] A. V. Martynenko, A. F. Tedeev, and V. N. Shramenko, “Cauchy problem for the degenerating parabolic equation with inhomogeneous density and source in the class of initial functions slowly approaching zero,” Izv. Ros. Akad. Nauk, Ser. Mat., 76, No. 3, 139-156 (2012). · Zbl 1255.35146
[30] N. V. Afanas’eva and A. F. Tedeev, “Fujita-type theorems for quasilinear parabolic equations in the case of slowly vanishing initial data,” Mat. Sb., 195, No. 4, 3-22 (2004). · Zbl 1073.35028 · doi:10.4213/sm812
[31] D. Andreucci, “Degenerate parabolic equations with initial data measures,” Trans. Amer. Math. Soc., 340, No. 10, 3911-3923 (1997). · Zbl 0885.35056 · doi:10.1090/S0002-9947-97-01530-4
[32] F. Bernis, “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains,” Math. Ann., 279, 373-394 (1988). · Zbl 0609.35048 · doi:10.1007/BF01456275
[33] H. W. Alt and S. Luckhaus, “Quasilinear elliptic-parabolic differential equations,” Math. Z., 183, 311-341 (1983). · Zbl 0497.35049 · doi:10.1007/BF01176474
[34] A. V. Martynenko and A. F. Tedeev, “Regularity of solutions of degenerating parabolic equations with inhomogeneous density,” Ukr. Mat. Vestn., 5, No. 1, 116-145 (2008).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.